Showing posts with label PRIONOPATHY. Show all posts
Showing posts with label PRIONOPATHY. Show all posts

Friday, December 17, 2010

PRION DISEASE Action Plan National Program 103 Animal Health 2012-2017

Prion Gene PRNP ARS researchers at the Midwest Area’s Virus and Prion Research Unit in Ames, IA, identified a prion gene PRNP haplotype that associates with atypical bovine spongiform encephalopathy (BSE). Atypical BSEs are rare prion diseases that have been identified in Asian, European and North American cattle. Two cases have been confirmed within the United States. In 2007, ARS established collaboration with investigators in France, Canada and fellow ARS scientists at the National Animal Disease Center to elucidate the genetics of atypical BSE susceptibility. AHRU characterized PRNP variation in atypical BSE cases from Canada, France, and the United States and identified the haplotype association with atypical BSE. The significance of this finding isn’t the haplotype itself, but evidence that a majority of atypical BSE cases are attributable to underlying

22

FY 2009 Annual Report

genetic susceptibility. This argues against a spontaneous origin for many atypical BSE cases. This research is part of Animal Health, an ARS national program (#103).

http://www.ars.usda.gov/sp2UserFiles/Place/01090000/USDAFY2009AnnualReportonTechnologyTransferreleased7July2010FinalNSSEPT.pdf


Action Plan

National Program 103

Animal Health

2012-2017

Problem Statement 2E: Genetics of Prion Disease Susceptibility

Prion diseases have stimulated intense scientific scrutiny since it was first proposed that the infectious agent was devoid of nucleic acid. Despite this finding, host genetics has played a key role in understanding the pathobiology and clinical aspects of prion diseases through the effects of a series of polymorphisms and mutations in the prion protein gene. The advent of vCJD confirmed a powerful human genetic susceptibility factor, as all patients with clinical disease have an identical genotype at the polymorphic codon 129 of the prion gene. The alternative variant at codon 129 is not protective, however, and abnormal prions have been found in lymphoid tissues of individuals of other prion genotypes after exposure to transfused blood products from patients who later succumbed to the disease. Familial forms of prion diseases are also known to be inherited in an autosomal dominant pattern, which means one copy of the altered gene in each cell is sufficient to cause the disorder. In most cases, an affected person inherits the altered gene from one affected parent. In some people, familial forms of prion disease are caused by a new mutation in the prion gene. Although such people most likely do not have an affected parent, they can pass the genetic change to their children. Familial Creutzfeldt-Jakob disease (fCJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome, and fatal familial insomnia (FFI) represent the core phenotypes of genetic prion disease.

Genetic studies in animals have uncovered similar polymorphisms and mutations in the prion protein gene. Genetic information has led to the discovery of genotypes with relative susceptibility and resistance to Scrapie in sheep. Current Scrapie control programs in the United States and Europe are based on the elimination of susceptible genotypes from the breeding pool. The 2006 U.S. H.-type atypical BSE cow had a polymorphism at codon 211 of the bovine prion gene, resulting in a glutamic acid to lysine substitution (E211K). This substitution is analogous to a human polymorphism associated with the most prevalent form of heritable TSE in humans, and it is considered to have caused BSE in the 2006 U.S. atypical BSE animal.

Research Needs:

The functional genomics of disease resistance are not completely understood, and recent research suggests genetic variations may lead to different clinical outcomes (e.g., vCJD, atypical BSE, atypical Scrapie). This research area is aimed at utilizing powerful computational biology and bioinformatic approaches, along with traditional animal breeding experiments, to steadily improve our understanding of mechanisms of genetic disease resistance. 18

Anticipated Products:

Genetic variations associated with disease susceptibility.

Scientific information on the correlation between host genotypes and the phenotypes of prion agents.

Genetic factors controlling susceptibility of goats to sheep Scrapie.

Scientific information to evaluate the effectiveness of disease resistance breeding programs in sheep.

Scientific information to evaluate sheep ARR/ARR genotype for resistance to different TSE strains.

Scientific information on the influence of genetics on BSE incubation time and the frequency of animals carrying the E211K allele.

Potential Benefits:

These studies will yield critical genetic information that influences disease susceptibility, clinical outcomes, surveillance programs, and the discovery of diagnostic techniques as well as preventative and treatment programs.

snip...

Component 7: Transmissible Spongiform Encephalopathies (TSEs)

Transmissible spongiform encephalopathies (TSEs) include several fatal diseases of people and animals involving degeneration of the nervous system and brain function. TSEs are caused by agents known as prions, or what appear to be primarily infectious proteins that cause normal protein (cellular-prion protein PrPc) molecules to convert into an abnormally structured form (disease-prion protein PrPsc) that can include inducement of the formation of proteinaceous deposits and plaques in the brain. TSEs include Creutzfeldt-Jakob disease (CJD), the primary human prion disease; Scrapie of sheep and goats; Chronic Wasting Disease (CWD) of deer, elk, and moose; and Bovine Spongiform Encephalopathy (BSE), also called ?mad cow,? which is the cause of variant CJD (vCJD) in people and the only TSE known to have crossed the species barrier from animals to people.

Our understanding of TSEs continues to evolve with ongoing research efforts. TSEs are progressive but long developing diseases. In humans, for example, incubation periods from the time of contact with an infectious prion may be decades long. Consequently, completion of research plans in natural hosts may require several years. Improvements have been made with the development of experimental rodent models to shorten the time required to obtain experimental results, but the relevance of any findings in mouse models remains uncertain unless confirmed and validated in natural hosts. In 2004, the Institute of Medicine of the National Academies published a report entitled: Advancing Prion Science, Guidance for the National Prion Research Program. Several federal agencies have directed resources to implement recommendations in the report, including HHS-NIH-, USDA-REE-ARS, HHS-FDA, HHS-CDC, DoD, and EPA. Although significant scientific advances have been made, the research conducted to date has yet to deliver many of the concrete solutions needed to safeguard people and animals from these devastating diseases. A critical concern is the potential for environmental, genetic, or iatrogenic events to lead to new variant TSEs that are infectious and zoonotic.

The White House Office of Science and Technology Policy (OSTP) Interagency Working Group (IWG) on Prion Science identified the following research priorities to maximize the impact of the National Prion Research Program:

Identification of the nature and origin of prion agents

Studies on the pathobiology of prion strains

Research on the determinants of transmissibility and epidemiology

Development of diagnostics, detection, and surveillance

39

These interrelated priorities represent areas with critical gaps in our knowledge base. They were selected with the aim of establishing strategic collaborations that will produce benefits by aligning core competencies across Federal agencies. Especially notable are the potential benefits to be derived from collaboration between animal health and human -biomedical research.

Stakeholders representing the sheep industries at our March 2010 Animal Health Workshop ranked research to eradicate Scrapie as their 2nd priority, and the goat industry listed it as their 6th priority.

Problem Statement 7A: Nature and Origin of Prion Agents

Significant gaps remain in our understanding of the nature and origin of disease-causing prions. Proving especially problematic is that the normal prion protein is widely expressed, particularly on neurons in the brain, and is found on cell surfaces but its function is unclear. Moreover, the origin of BSE remains a mystery, although spontaneous conversion of bovine prion to the diseased form as occurs in human Creutzfeldt-Jakob disease is one researchable hypothesis. In addition, recent evidence indicates that some forms of BSE may be genetic in nature. Another enigma of TSEs in general is that different strains are found within the same animal species.

Research Needs:

The newly discovered strains of BSE and Scrapie, so-called ?typical?strains, have yet to be fully characterized. There are also fundamental differences between TSEs in different animal species. The factors responsible for host restrictions (species-barrier) are also not fully understood. An investment in this area of research is of paramount importance and will inform all other areas of prion research.

Anticipated Products:

Scientific information on:

The physiological functions of normal prion proteins.

The biophysical and biochemical properties of abnormal prion agents.

Mechanisms of prion protein misfolding.

The origin and prevalence of scrapie in goats.

The origin and prevalence of atypical scrapie in sheep.

The origin of atypical BSE and relationship to classical disease form.

The basis for multiple TSE strains within a host species.

Potential Benefits:

This research will inform the field of prion science and is critical for advancing research programs in countermeasure discovery (see Problem Statement 7D below). Additional benefits will be derived from collaborations between animal health and biomedical research scientists resulting in animal disease models that will enhance our understanding of protein misfolding diseases, molecular neurology and genetics. 40

Problem Statement 7B: Pathobiology of Prion Strains

Important gaps remain in our basic understanding of the pathobiology of animal prion diseases. One critical need is that of understanding the invasion routes of prions and resolving the variations seen in different animal species.

Research Needs:

It is widely assumed that the oral route of infection is important in the pathogenesis of naturally occurring TSEs of livestock and cervids; however, the mechanism of transmission of TSE agents from the initial site of entry to the central nervous system is not known. A notable feature of prion diseases is a lack of detectable immune responses and inflammation during the course of a prion infection, even though immune system cells may carry prions to target tissues. To date, research in animals suggests that prion accumulation may be largely influenced by the host species affected rather than the TSE involved. An investment in comparative pathology, which has not received much experimental attention, is needed to advance research programs in epidemiology and diagnostic discovery.

Anticipated Products:

Scientific information on:

The manner in which prions enter the nervous system from peripheral sites of exposure such as a host’s gastrointestinal tract, nasal mucosa, skin, and eyes.

Mechanisms of prion spread within the nervous system.

Mechanisms controlling disease incubation time.

Mechanisms of neuropathogenesis.

The molecular underpinnings of prion strains and species barriers.

Prion distribution in goats with scrapie.

Prion distribution in cattle with atypical BSE.

Prion distribution in sheep with atypical scrapie and BSE.

Potential Benefits:

This research will inform the field of prion science of potential risks to human health associated with the newly emerging strains of TSE in various animal hosts and is critical for advancing research programs in epidemiology and diagnostic discovery (see Problem Statements 7C and 7D below).

Problem Statement 7C: Determinants of Transmissibility and Epidemiology

In interspecies transmission studies of TSEs (e.g., Scrapie, CWD) into new hosts (e.g., cattle and rodent models that have proved useful in experimental protocols), scientists have demonstrated the extent of prion accumulation in tissues. There appears to be fundamental differences between hosts but also similarities within animal species, regardless of which TSE is affecting them.

Research Needs: 41

An essential research need is the development of infection models that represent real TSEs in real target hosts. The results of this research would add insight into human transmissibility and epidemiology.

Anticipated Products:

Scientific information on:

Mechanisms by which abnormal prions are present in biological fluids.

The infectious potential of prions from biological fluids.

Infectivity time course and transmission.

The potential for transmitting scrapie prions to cervids naturally (orally).

The transmission routes of goat scrapie.

The transmission routes of CWD.

The transmission route of atypical scrapie and atypical BSE.

The transmissibility of sheep scrapie to goats and vice versa, including the effects of age and genetic factors on transmissibility.

The transmissibility of atypical BSE isolates to cattle.

Potential Benefits:

This research will directly impact the development of improved diagnostic tests (see Problem Statement 7D below), as well as surveillance programs and future measures to prevent the dissemination of TSEs in animal and human populations. The development of infection models in natural hosts will also build national capacity to implement research programs that target host-pathogen interactions and the discovery of countermeasures. Results from such studies could directly translate into a better understanding of the potential for the transmissibility of animal TSEs to humans.

Problem Statement 7D: Diagnostics, Detection, and Surveillance

Important gaps remain in our arsenal of diagnostic tools to detect TSEs. Current diagnostic tests were validated for use only on post-mortem samples; sensitive ante mortem tests have yet to be developed. Because there is no detectable immune response or inflammation during the course of TSE infection, direct tests are needed to confirm a diagnosis. At present, only highly-infected tissues, such as brain material or lymph tissue, are suitable for providing accurate diagnoses.

Research Needs:

Diagnostic approaches currently in use include techniques such as immunohistochemistry (IHC), Western blot, and enzyme-linked immunosorbent assays (ELISA). IHC is one of the original tests developed and is considered the gold standard, but it is more labor intensive and time consuming than the other two, whereas the Western blot and particularly ELISA tests are more efficient for the initial screening of large numbers of samples. Another method is the Conformation-Dependent Immunoassay (CDI), currently a research technique that claims to discriminate between normal prion and the abnormal prion on the basis of its shape, but this has yet to be validated as a diagnostic test in animals. New 42

technologies and methods have been described using protein misfolding cyclic amplification techniques (PMCA), similar in concept to gene/DNA amplification, which effectively increases the concentration of prions in normal or pathological conformations. There is a critical need to improve diagnostics methods for surveillance, including the discovery of an ante mortem test for early detection and implementation of intervention strategies.

Anticipated Products:

TSE diagnostic test capable of detecting low levels of abnormal prions (i.e., key step to enable the development of an ante mortem test that can identify disease during the early stages of incubation).

Validation of existing biopsy-based TSE tests in goats, deer, and elk.

Rapid biochemical methods for strain typing.

Validated murine models for strain typing.

Improved diagnostics for TSEs in bodily fluids, including blood in host species where this might be possible.

Technologies to distinguish infectious prions from normal cellular prion proteins.

Determination of the prevalence of proteinase K sensitive prion in the various TSEs and potential of this form to cause disparate results between IHC, WB, and ELISA tests.

Potential Benefits:

The discovery of an ante mortem diagnostic test would enable the medical community to test and discover effective treatments in people. Importantly, new and improved diagnostic platforms and an ante mortem diagnostic test for susceptible livestock will enable early detection and the implementation of effective surveillance programs, a critical step that will allow the deployment of disease prevention measures.

Component 7 Resources:

The following ARS locations have research projects addressing the problem statements identified under Component 7:

Ames, IA

Albany, CA

Ames, IA

Pullman, WA

http://www.ars.usda.gov/SP2UserFiles/Program/103/NP103ActionPlanFY12-FY17.pdf



Atypical BSEs have recently been identified in Asian, North American, and European cattle [11]. Two PRNP alleles are implicated with atypical BSE susceptibility. A non-synonymous polymorphism (E211K) was found by one of us (J.A.R.) within the prion coding region of an Htype atypical BSE case identified in the U.S. (2006). The E211K polymorphism is homologous to the human E200K polymorphism, a risk factor for genetic Creutzfeldt- Jakob disease [12], and is the suspected cause of the atypical BSE case. The 211 K allele is exceedingly rare and has not been found in other atypical BSE cases or healthy cattle [10,13,14]. However, a PRNP haplotype that is associated with atypical BSE susceptibility was found in Hand L-type atypical cases from Canada, France, and the U.S., and may have widespread involvement with atypical BSE [8]. The haplotype spans part of PRNP intron 2, the entire coding region of exon 3, and part of the three prime untranslated region of exon 3 (13 kb) [8,10]. Alleles that may be causative for atypical BSE susceptibility, including those that may be within PRNP, are thought to be linked with the implicated haplotype in atypical BSE cases [8].


http://www.ars.usda.gov/SP2UserFiles/Place/54380510/Publications/2008Reprints/BMC_Res_Notes_2008_1-32.pdf




"The significance of this finding isn’t the haplotype itself, but evidence that a majority of atypical BSE cases are attributable to underlying genetic susceptibility. This argues against a spontaneous origin for many atypical BSE cases. This research is part of Animal Health, an ARS national program (#103). FY 2009 Annual Report"


SO, what does that tell us ? tainted TSE ruminant feed maybe ?


P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *It also suggests a similar cause or source for atypical BSE in these countries.

http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf


Wednesday, July 28, 2010

re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010

http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html


10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm


Tuesday, March 2, 2010

Animal Proteins Prohibited in Ruminant Feed/Adulterated/Misbranded Rangen Inc 2/11/10 USA

http://madcowfeed.blogspot.com/2010/03/animal-proteins-prohibited-in-ruminant.html


Monday, March 1, 2010

ANIMAL PROTEIN I.E. MAD COW FEED IN COMMERCE A REVIEW 2010

http://madcowfeed.blogspot.com/2010/03/animal-protien-ie-mad-cow-feed-in.html


LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.

This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$

ALABAMA MAD COW g-h-BSEalabama

In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.

http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156


http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF


Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY

(see mad cow feed in COMMERCE IN ALABAMA...TSS)


http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html


2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006

http://bse-atypical.blogspot.com/2006/08/bse-atypical-texas-and-alabama-update.html


Sent: Saturday, December 11, 2010 3:17 PM

Subject: Species-barrier-independent prion replication in apparently resistant species

Species-barrier-independent prion replication in apparently resistant species

Pertenece a: UCL University College London Eprints

Descripción: Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host, Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions, Current definitions of the species barrier, which have been based on clinical endpoints, need to be fundamentally reassessed.

Autor(es): Hill, AF - Joiner, S - Linehan, J - Desbruslais, M - Lantos, PL - Collinge, J -

Fecha de contribución: 10-dic-2010

Contacto:

http://biblioteca.universia.net/html_bura/ficha/params/id/52395313.html


for those interested, see more here with comments........

Saturday, December 11, 2010

Species-barrier-independent prion replication in apparently resistant species


http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/species-barrier-independent-prion.html


Thursday, November 18, 2010

UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS

http://bse-atypical.blogspot.com/2010/11/united-states-of-america-vs-galen-j.html


Tuesday, November 02, 2010

BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992

http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html


Monday, November 22, 2010

Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control

REVIEW ARTICLES

http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/atypical-transmissible-spongiform.html


Thursday, November 18, 2010

Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep

http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html


Seven main threats for the future linked to prions

The NeuroPrion network has identified seven main threats for the future linked to prions.

First threat

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

http://www.neuroprion.org/en/np-neuroprion.html


Thursday, August 12, 2010

Seven main threats for the future linked to prions

http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html


http://prionpathy.blogspot.com/


AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to other species will invariably present pathology typical of a scrapie-like disease.

snip...

http://collections.europarchive.org/tna/20080102185948/http://www.bseinquiry.gov.uk/files/yb/1991/01/04004001.pdf


Sunday, November 28, 2010

Variably protease-sensitive prionopathy in a PRNP codon 129 heterozygous UK patient with co-existing tau, a synuclein and AB pathology

http://prionopathy.blogspot.com/2010/11/variably-protease-sensitive-prionopathy.html


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


PRION 2010 Meeting Report International Prion Congress: From agent to disease; September 8–11, 2010; Salzburg, Austria Volume 4, Issue 3 July/August/September 2010

http://www.landesbioscience.com/journals/prion/article/12764/


THIS FDA recall for CWD positive product in commerce, was NOT done for the welfare of the dead CWD postive elk. ...TSS


Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

RECALLS AND FIELD CORRECTIONS: FOODS CLASS II

___________________________________

PRODUCT a) Elk Meat, Elk Tenderloin, Frozen in plastic vacuum packaging. Each package is approximately 2 lbs., and each case is approximately 16 lbs.; Item number 755125, Recall # F-129-9;

b) Elk Meat, Elk Trim, Frozen; Item number 755155, Recall # F-130-9;

c) Elk Meat, French Rack, Chilled. Item number 755132, Recall # F-131-9;

d) Elk Meat, Nude Denver Leg. Item number 755122, Recall # F-132-9;

e) Elk Meat, New York Strip Steak, Chilled. Item number 755128, Recall # F-133-9;

f) Elk Meat, Flank Steak Frozen. Item number 755131, Recall # F-134-9; CODE Elk Meats with production dates of December 29, 30, and 31

RECALLING FIRM/MANUFACTURER

Recalling Firm: Sierra Meats, Reno, NV, by telephone on January 29, 2009 and press release on February 9, 2009. Manufacturer: Noah’s Ark Holding, LLC, Dawson, MN. Firm initiated recall is ongoing.

REASON

Elk products contain meat derived from an elk confirmed to have Chronic Wasting Disease (CWD).

VOLUME OF PRODUCT IN COMMERCE Unknown

DISTRIBUTION NV, CA, TX, CO, NY, UT, FL, OK

http://www.fda.gov/Safety/Recalls/EnforcementReports/ucm154840.htm


Sunday, April 12, 2009

CWD UPDATE Infection Studies in Two Species of Non-Human Primates and one Environmental reservoir infectivity study and evidence of two strains

snip...

From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To:

Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.

That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From:

Sent: Sunday, September 29, 2002 10:15 AM

To: [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]; [log in to unmask]">[log in to unmask]

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM ......snip........end..............TSS

snip...

full text ;

http://chronic-wasting-disease.blogspot.com/2009/02/exotic-meats-usa-announces-urgent.html


http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html


see full text ;

http://chronic-wasting-disease.blogspot.com/2009/04/cwd-update-infection-studies-in-two.html


Tuesday, February 09, 2010

Chronic Wasting Disease: Surveillance Update North America: February 2010

"In addition, we documented horizontal transmission of CWD from inoculated mice and to un-inoculated cohabitant cage-mates."

http://ajp.amjpathol.org/cgi/content/abstract/ajpath.2010.090710v1


http://chronic-wasting-disease.blogspot.com/2010/02/chronic-wasting-disease-surveillance.html


There are now two documented strains of CWD, and science is showing that indeed CWD could transmit to humans via transmission studies ;

PPo3-7:

Prion Transmission from Cervids to Humans is Strain-dependent

Qingzhong Kong, Shenghai Huang,*Fusong Chen, Michael Payne, Pierluigi Gambetti and Liuting Qing Department of Pathology; Case western Reserve University; Cleveland, OH USA *Current address: Nursing Informatics; Memorial Sloan-Kettering Cancer Center; New York, NY USA

Key words: CWD, strain, human transmission

Chronic wasting disease (CWD) is a widespread prion disease in cervids (deer and elk) in North America where significant human exposure to CWD is likely and zoonotic transmission of CWD is a concern. Current evidence indicates a strong barrier for transmission of the classical CWD strain to humans with the PrP-129MM genotype. A few recent reports suggest the presence of two or more CWD strains. What remain unknown is whether individuals with the PrP-129VV/MV genotypes are also resistant to the classical CWD strain and whether humans are resistant to all natural or adapted cervid prion strains. Here we report that a human prion strain that had adopted the cervid prion protein (PrP) sequence through passage in cervidized transgenic mice efficiently infected transgenic mice expressing human PrP, indicating that the species barrier from cervid to humans is prion strain-dependent and humans can be vulnerable to novel cervid prion strains. Preliminary results on CWD transmission in transgenic mice expressing human PrP-129V will also be discussed.

Acknowledgement Supported by NINDS NS052319 and NIA AG14359.

PPo2-27:

Generation of a Novel form of Human PrPSc by Inter-species Transmission of Cervid Prions

Marcelo A. Barria,1 Glenn C. Telling,2 Pierluigi Gambetti,3 James A. Mastrianni4 and Claudio Soto1 1Mitchell Center for Alzheimer's disease and related Brain disorders; Dept of Neurology; University of Texas Houston Medical School; Houston, TX USA; 2Dept of Microbiology, Immunology & Molecular Genetics and Neurology; Sanders Brown Center on Aging; University of Kentucky Medical Center; Lexington, KY USA; 3Institute of Pathology; Case western Reserve University; Cleveland, OH USA; 4Dept of Neurology; University of Chicago; Chicago, IL USA

Prion diseases are infectious neurodegenerative disorders affecting humans and animals that result from the conversion of normal prion protein (PrPC) into the misfolded and infectious prion (PrPSc). Chronic wasting disease (CWD) of cervids is a prion disorder of increasing prevalence within the United States that affects a large population of wild and captive deer and elk. CWD is highly contagious and its origin, mechanism of transmission and exact prevalence are currently unclear. The risk of transmission of CWD to humans is unknown. Defining that risk is of utmost importance, considering that people have been infected by animal prions, resulting in new fatal diseases. To study the possibility that human PrPC can be converted into the infectious form by CWD PrPSc we performed experiments using the Protein Misfolding Cyclic Amplification (PMCA) technique, which mimic in vitro the process of prion replication. Our results show that cervid PrPSc can induce the pathological conversion of human PrPC, but only after the CWD prion strain has been stabilized by successive passages in vitro or in vivo. Interestingly, this newly generated human PrPSc exhibits a distinct biochemical pattern that differs from any of the currently known forms of human PrPSc, indicating that it corresponds to a novel human prion strain. Our findings suggest that CWD prions have the capability to infect humans, and that this ability depends on CWD strain adaptation, implying that the risk for human health progressively increases with the spread of CWD among cervids.

PPo2-7:

Biochemical and Biophysical Characterization of Different CWD Isolates

Martin L. Daus and Michael Beekes Robert Koch Institute; Berlin, Germany

Key words: CWD, strains, FT-IR, AFM

Chronic wasting disease (CWD) is one of three naturally occurring forms of prion disease. The other two are Creutzfeldt-Jakob disease in humans and scrapie in sheep. CWD is contagious and affects captive as well as free ranging cervids. As long as there is no definite answer of whether CWD can breach the species barrier to humans precautionary measures especially for the protection of consumers need to be considered. In principle, different strains of CWD may be associated with different risks of transmission to humans. Sophisticated strain differentiation as accomplished for other prion diseases has not yet been established for CWD. However, several different findings indicate that there exists more than one strain of CWD agent in cervids. We have analysed a set of CWD isolates from white-tailed deer and could detect at least two biochemically different forms of disease-associated prion protein PrPTSE. Limited proteolysis with different concentrations of proteinase K and/or after exposure of PrPTSE to different pH-values or concentrations of Guanidinium hydrochloride resulted in distinct isolate-specific digestion patterns. Our CWD isolates were also examined in protein misfolding cyclic amplification studies. This showed different conversion activities for those isolates that had displayed significantly different sensitivities to limited proteolysis by PK in the biochemical experiments described above. We further applied Fourier transform infrared spectroscopy in combination with atomic force microscopy. This confirmed structural differences in the PrPTSE of at least two disinct CWD isolates. The data presented here substantiate and expand previous reports on the existence of different CWD strains.

http://www.prion2010.org/bilder/prion_2010_program_latest_w_posters_4_.pdf?139&PHPSESSID=a30a38202cfec579000b77af81be3099


UPDATED DATA ON 2ND CWD STRAIN

Wednesday, September 08, 2010

CWD PRION CONGRESS SEPTEMBER 8-11 2010

http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html


http://chronic-wasting-disease.blogspot.com/


P35

ADAPTATION OF CHRONIC WASTING DISEASE (CWD) INTO HAMSTERS, EVIDENCE OF A WISCONSIN STRAIN OF CWD

Chad Johnson1, Judd Aiken2,3,4 and Debbie McKenzie4,5 1 Department of Comparative Biosciences, University of Wisconsin, Madison WI, USA 53706 2 Department of Agriculture, Food and Nutritional Sciences, 3 Alberta Veterinary Research Institute, 4.Center for Prions and Protein Folding Diseases, 5 Department of Biological Sciences, University of Alberta, Edmonton AB, Canada T6G 2P5

The identification and characterization of prion strains is increasingly important for the diagnosis and biological definition of these infectious pathogens. Although well-established in scrapie and, more recently, in BSE, comparatively little is known about the possibility of prion strains in chronic wasting disease (CWD), a disease affecting free ranging and captive cervids, primarily in North America. We have identified prion protein variants in the white-tailed deer population and demonstrated that Prnp genotype affects the susceptibility/disease progression of white-tailed deer to CWD agent. The existence of cervid prion protein variants raises the likelihood of distinct CWD strains. Small rodent models are a useful means of identifying prion strains. We intracerebrally inoculated hamsters with brain homogenates and phosphotungstate concentrated preparations from CWD positive hunter-harvested (Wisconsin CWD endemic area) and experimentally infected deer of known Prnp genotypes. These transmission studies resulted in clinical presentation in primary passage of concentrated CWD prions. Subclinical infection was established with the other primary passages based on the detection of PrPCWD in the brains of hamsters and the successful disease transmission upon second passage. Second and third passage data, when compared to transmission studies using different CWD inocula (Raymond et al., 2007) indicate that the CWD agent present in the Wisconsin white-tailed deer population is different than the strain(s) present in elk, mule-deer and white-tailed deer from the western United States endemic region.

http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf


Wednesday, November 17, 2010

CWD Update 98 November 10, 2010

http://chronic-wasting-disease.blogspot.com/2010/11/cwd-update-98-november-10-2010.html


http://chronic-wasting-disease.blogspot.com/


what about that sheep scrapie, and how the feds so freely said that sheep scrapie has and would never transmit to humans......well, think again. ...terry


Thursday, November 18, 2010

Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep

http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html


Sunday, December 12, 2010

EFSA reviews BSE/TSE infectivity in small ruminant tissues News Story 2 December 2010

http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/efsa-reviews-bsetse-infectivity-in.html


IN CONFIDENCE

IS THERE A SCRAPIE-LIKE DISEASE IN CATTLE ?

http://collections.europarchive.org/tna/20080102233201/http://www.bseinquiry.gov.uk/files/yb/1987/06/10004001.pdf


http://web.archive.org/web/20030516051623/http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf


IN CONFIDENCE

PERCEPTIONS OF A SLOW VIRUS DISEASE IN ANIMALS IN THE USA

http://collections.europarchive.org/tna/20081106012811/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf


2010

Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government’s decision to relax import restrictions on beef Final report June 2010

2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49

2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo—has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50

http://www.aph.gov.au/senate/committee/rrat_ctte/mad_cows/report/report.pdf


Sunday, September 6, 2009

MAD COW USA 1997 SECRET VIDEO

http://madcowusda.blogspot.com/2009/09/mad-cow-usa-1997-video.html


U.S.A. HIDING MAD COW DISEASE VICTIMS AS SPORADIC CJD ? see video at bottom

http://creutzfeldt-jakob-disease.blogspot.com/2009/07/usa-hiding-mad-cow-disease-victims-as.html


2010 PRION UPDATE

Thursday, August 12, 2010

Seven main threats for the future linked to prions

http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html


http://prionpathy.blogspot.com/


Tuesday, March 16, 2010

COMMONWEALTH OF AUSTRALIA Hansard Import restrictions on beef FRIDAY, 5 FEBRUARY 2010 AUSTRALIA

COMMONWEALTH OF AUSTRALIA

Proof Committee Hansard

RRA&T 2 Senate Friday, 5 February 2010

RURAL AND REGIONAL AFFAIRS AND TRANSPORT

[9.03 am]

BELLINGER, Mr Brad, Chairman, Australian Beef Association

CARTER, Mr John Edward, Director, Australian Beef Association

CHAIR—Welcome. Would you like to make an opening statement?

Mr Bellinger—Thank you. The ABA stands by its submission, which we made on 14 December last year, that the decision made by the government to allow the importation of beef from BSE affected countries is politically based, not science based. During this hearing we will bring forward compelling new evidence to back up this statement. When I returned to my property after the December hearing I received a note from an American citizen. I will read a small excerpt from the mail he sent me in order to reinforce the dangers of allowing the importation of beef from BSE affected countries. I have done a number of press releases on this topic, and this fellow has obviously picked my details up from the internet. His name is Terry Singeltary and he is from Bacliff, Texas. He states, and rightfully so:

You should be worried. Please let me explain. I’ve kept up with the mad cow saga for 12 years today, on December 14th 1997, some four months post voluntary and partial mad cow feed ban in the USA, I lost my mother to the Heidenhain variant Creutzfeldt-Jakob disease (CJD). I know this is just another phenotype of the infamous sporadic CJDs. Here in the USA, when USA sheep scrapie was transmitted to USA bovine, the agent was not UK BSE—it was a different strain. So why then would human TSE from USA cattle look like UK CJD from UK BSE? It would not. So this accentuates that the science is inconclusive still on this devastating disease. He goes on to state:

The OIE— the International Organisation of Epizootics, the arm of the WTO— is a failed global agent that in my opinion is bought off via bogus regulations for global trade and industry reps. I have done this all these years for nothing but the truth. I am a consumer, I eat meat, but I do not have to sit idly by and see the ignorance and greed of it all while countless numbers of humans and animals are being exposed to the TSE agents. All the USA is interested in is trade, nothing else matters.

Even Dr Stanley Prusiner, who incidentally won the Nobel Health Prize in 1997 for his work on the prion—he invented the word ‘prion’, or it came from him—states:

snip...see full text 110 pages ;

http://www.aph.gov.au/hansard/senate/commttee/S12742.pdf


*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

http://www.neuroprion.org/en/np-neuroprion.html


http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html


for those interested, please see much more here ;


http://docket-aphis-2006-0041.blogspot.com/2010/03/commonwealth-of-australia-hansard.html


http://transmissiblespongiformencephalopathy.blogspot.com/2010/02/transmissible-spongiform-encephalopathy.html


Tuesday, December 14, 2010 TAFS1

Position Paper on Relaxation of the Feed Ban in the EU SUMMARY © TAFS, Berne, 2010

http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/tafs1-position-paper-on-relaxation-of.html


Tuesday, June 1, 2010

USA cases of dpCJD rising with 24 cases so far in 2010

http://cjdtexas.blogspot.com/2010/06/usa-cases-of-dpcjd-rising-with-24-cases.html


Wednesday, June 16, 2010

Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties

http://creutzfeldt-jakob-disease.blogspot.com/2010/06/defining-sporadic-creutzfeldt-jakob.html


Tuesday, December 14, 2010

Infection control of CJD, vCJD and other human prion diseases in healthcare and community settings part 4, Annex A1, Annex J, UPDATE DECEMBER 2010

http://creutzfeldt-jakob-disease.blogspot.com/2010/12/infection-control-of-cjd-vcjd-and-other.html



DID EVERYONE FILL OUT THEIR CJD QUESIONNAIRE FROM THE CDC AND OR THE CJD FOUNDATION ???


Friday, November 30, 2007

CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION

http://cjdquestionnaire.blogspot.com/


USA

5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;

6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.

2010

PLEASE NOTE REFERENCE LINES 5. AND 6.

Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010) Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD

1996 & earlier 51 33 28 5 0 0

1997 114 68 59 9 0 0

1998 88 52 44 7 1 0

1999 120 72 64 8 0 0

2000 146 103 89 14 0 0

2001 209 119 109 10 0 0

2002 248 149 125 22 2 0

2003 274 176 137 39 0 0

2004 325 186 164 21 0 1(3)

2005 344 194 157 36 1 0

2006 383 197 166 29 0 2(4)

2007 377 214 187 27 0 0

2008 394 231 204 25 0 0

2009 425 259 216 43 0 0

2010 204 124 85 20 0 0

TOTAL 3702(5) 2177(6) 1834 315 4 3

1 Listed based on the year of death or, if not available, on year of referral;

2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted;

3 Disease acquired in the United Kingdom;

4 Disease was acquired in the United Kingdom in one case and in Saudi Arabia in the other case;

5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;

6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.

http://www.cjdsurveillance.com/pdf/case-table.pdf


Monday, August 9, 2010

National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)

(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)

http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html



Atypical BSE in Cattle

BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

snip...see full text ;



http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2



14th ICID International Scientific Exchange Brochure -

Final Abstract Number: ISE.114

Session: International Scientific Exchange

Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

T. Singeltary

Bacliff, TX, USA

Background:

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods:

12 years independent research of available data

Results:

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion:

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

page 114 ;

http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf



The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653

BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1

1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:

John Collinge, E-mail: j.collinge@prion.ucl.ac.uk

Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002

--------------------------------------------------------------------------------

Abstract

Variant Creutzfeldt–Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.

Keywords:BSE, Creutzfeldt–Jakob disease, prion, transgenic

http://www.nature.com/emboj/journal/v21/n23/abs/7594869a.html


BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein

Emmanuel A. Asante, Jacqueline M. Linehan, Melanie Desbruslais, Susan Joiner, Ian Gowland, Andrew L. Wood, Julie Welch, Andrew F. Hill, Sarah E. Lloyd, Jonathan D.F. Wadsworth, and John Collinge1 MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK 1Corresponding author e-mail: j.collinge@prion.ucl.ac.ukReceived August 1, 2002; Revised September 24, 2002; Accepted October 17, 2002.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136957/?tool=pubmed


BSE101/1 0136

IN CONFIDENCE

CMO

From: Dr J S Metters DCMO

4 November 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES


http://collections.europarchive.org/tna/20081106170650/http://www.bseinquiry.gov.uk/files/yb/1992/11/04001001.pdf


CJD1/9 0185

Ref: 1M51A

IN STRICT CONFIDENCE

From: Dr. A Wight

Date: 5 January 1993

Copies:

Dr Metters

Dr Skinner

Dr Pickles

Dr Morris

Mr Murray

TRANSMISSION OF ALZHEIMER-TYPE PLAQUES TO PRIMATES


http://collections.europarchive.org/tna/20080102191246/http://www.bseinquiry.gov.uk/files/yb/1993/01/05004001.pdf


Friday, September 3, 2010

Alzheimer's, Autism, Amyotrophic Lateral Sclerosis, Parkinson's, Prionoids, Prionpathy, Prionopathy, TSE


http://betaamyloidcjd.blogspot.com/2010/09/alzheimers-autism-amyotrophic-lateral.html


http://betaamyloidcjd.blogspot.com/


Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518