EFSA Journal 2011;9(1):1947
Suggested citation: EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA Journal 2011;9(1):1947. [80 pp.]
doi:10.2903/j.efsa.2011.1947. Available online: www.efsa.europa.eu/efsajournal
© European Food Safety Authority, 2011
SCIENTIFIC OPINION
Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs)1
EFSA Panel on Biological Hazards (BIOHAZ)2, 3
European Food Safety Authority (EFSA), Parma, Italy
ABSTRACT
The cattle Bovine Spongiform Encephalopathy (BSE) risk posed by bovine derived Processed Animal Proteins (PAPs) in feed was estimated, the diagnostic methods and their sensitivity to detect animal proteins in feed and compared different risk assessment methods for animal proteins in feed was reviewed. It was concluded that the current global limit of detection for PAPs in feed is still considered to be 0.1%. Data related to BSE monitoring and PAP production in the European Union (EU) were considered. A model (EFSA QRA PAP model) was developed to study the magnitude of the total BSE infectivity in PAPs and in ruminant feed under a certain scenario assuming some specific crosscontaminations. On the basis of the 2009 BSE surveillance data in the EU, assuming a 0.1% contamination (the limit of detection for PAP in feed) with non-ruminant PAPs and according to the EFSA QRA PAP model, the total BSE infectivity load that could enter in cattle feed per year in the EU would be equivalent to 0.2 Cattle oral Infectious Dose 50%4 (Co ID50) (9 x 10-5 – 1.3 CI95%) (that would mean that less than one additional BSE infected cattle could be expected in the EU cattle population per year with an upper 95% confidence). The specific scenario described by the model and the related assumptions and uncertainties are discussed in this scientific opinion.
© European Food Safety Authority, 2011
KEY WORDS
Bovine Spongiform Encephalopathy (BSE), quantitative risk assessment, Processed Animal Proteins (PAP), Cat 3 Animal By-Products
1 On request from the European Commission, Question No EFSA-Q-2010-00001, adopted on 09 December 2010.
2 Panel members: Olivier Andreoletti, Herbert Budka, Sava Buncic, John D Collins, John Griffin, Tine Hald, Arie Havelaar, James Hope, Günter Klein, James McLauchlin, Christine Müller-Graf, Christophe Nguyen-The, Birgit Noerrung, Luisa Peixe, Miguel Prieto Maradona, Antonia Ricci, John Sofos, John Threlfall, Ivar Vågsholm and Emmanuel Vanopdenbosch. Correspondence:
biohaz@efsa.europa.eu
3 Acknowledgement: The Panel wishes to thank the members of the Working Group on the review of the QRA of the residual BSE risk of MBM: Amie Adkin, Olivier Andreoletti, Philip Comer, Christian Ducrot, Michael Gravenor, Matthias Greiner, James Hope, Christine Müller-Graf and Emmanuel Vanopdenbosch for the preparatory work on this scientific opinion.
4 The oral dose which infects 50% of cattle in an experimental test.
Suggested citation: EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the revision of the quantitative risk assessment (QRA) of the BSE risk posed by processed animal proteins (PAPs). EFSA Journal 2011;9(1):1947. [80 pp.]
doi:10.2903/j.efsa.2011.1947. Available online: www.efsa.europa.eu/efsajournal
SNIP...
CONCLUSIONS AND RECOMMENDATIONS
CONCLUSIONS
• The current global limit of detection for PAPs in feed is still considered to be 0.1%.
• The EFSA 2004 QRA model was reviewed and compared with other published similar risk assessments. The structure of the model is considered to be still suitable for purpose of assessing the residual exposure from Classical BSE for cattle posed by bovine derived processed animal proteins at European Union level.
• For more specific questions and questions concerning particular countries, a more specific or different model should be considered.
• An updated version of the EFSA 2004 QRA model was developed (called EFSA QRA PAP model) to answer the specific terms of reference of this mandate.
• Scientific input data were reviewed and updated. Certain parameters were considered to be conservative and uncertainties were identified.
• The EFSA QRA PAP model relies on the continuation of the current SRM policy and TSE monitoring system. It also assumes that only Category 3 Animal By-Product material is allowed to enter in PAP produced from ruminant material.
• The EFSA QRA PAP model relies on the specific scenario described and on specific assumptions like homogenous mixing. While conservative values are used, uncertainties of certain parameters (i.e. the ratio of detected vs undetected infected animals, the probability of incomplete SRM removal and the amount of infectious tissue remaining after incomplete SRM removal) were identified. Changes in scientific knowledge would require an adjustment of the model.
• The EFSA QRA PAP model calculations are based on the present available data, including unofficial data about PAP production communicated directly by industry. Changes in PAP and feed production would require adjustment of the model input data.
• Based on 2009 BSE surveillance data and according to the EFSA QRA PAP model, assuming a 0.1% contamination (which is the limit of detection for PAPs in feed) with non-ruminant PAPs, the total BSE infectivity load that could enter in cattle feed in the EU would be equivalent to 0.2 Co ID50 (9 x 10-5 – 1.3 CI95%) (that would mean that less than one additional BSE infected cattle could be expected in the EU cattle population per year with an upper 95% confidence).
• Considering the many uncertainties related to Atypical BSE L and H (prevalence, tissue distribution of the infectious agent, efficacy of rendering process for agent inactivation) the risk of Atypical BSE transmission through PAPs cannot be assessed. It should however not be disregarded.
RECOMMENDATIONS
• In order to improve the limit of detection of animal proteins in feed the development of analytical methods should be continued.
• Considering the limitations of the model (including the scenario and the uncertainties), if the use of some mammalian PAPs for feeding animals should be reintroduced the risk of (re-)emergence of TSEs in cattle should be taken into account.
• In case of modification of the mitigation measures against BSE this assessment should be updated. The most important measures that were assumed in the EFSA QRA PAP model are the removal of SRMs and strict separation of ruminant and non-ruminant sources in the production and distribution of PAPs.
• Specific data related to the PAP production system and their distribution and use should be collected.
• Specific knowledge related to Atypical BSE should be expanded. In particular with regard to its prevalence, pathogenesis in natural host, capacity to propagate in other animal species and resistance to inactivation processes applied in rendering plants.
• When appropriate information on Atypical BSE will be available the present assessment should be revised.
http://www.efsa.europa.eu/en/efsajournal/doc/1947.pdf
> When appropriate information on Atypical BSE will
> be available the present assessment should be revised.
STRICTLY PRIVATE AND CONFIDENTIAL 25, AUGUST 1995
snip...
To minimise the risk of farmers' claims for compensation from feed compounders.
To minimise the potential damage to compound feed markets through adverse publicity.
To maximise freedom of action for feed compounders, notably by maintaining the availability of meat and bone meal as a raw material in animal feeds, and ensuring time is available to make any changes which may be required.
snip...
THE FUTURE
4..........
MAFF remains under pressure in Brussels and is not skilled at handling potentially explosive issues.
5. Tests _may_ show that ruminant feeds have been sold which contain illegal traces of ruminant protein. More likely, a few positive test results will turn up but proof that a particular feed mill knowingly supplied it to a particular farm will be difficult if not impossible.
6. The threat remains real and it will be some years before feed compounders are free of it. The longer we can avoid any direct linkage between feed milling _practices_ and actual BSE cases, the more likely it is that serious damage can be avoided. ...
SEE full text ;
http://collections.europarchive.org/tna/20080102153800/http://www.bseinquiry.gov.uk/files/yb/1995/08/24002001.pdf
THIS is what happens when you have the industry run the government $$$
WE now know that atypical BSE is more virulent than typical BSE, but the USA is still feeding cows to cows (see banned product in commerce to 2008), and that the infamous August 4, 1997, partial and voluntary mad cow feed ban in the USA was nothing more than ink on paper, so why has the SRM regulations not changed yet $$$
Saturday, June 12, 2010
PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse
http://bse-atypical.blogspot.com/2010/06/publication-request-and-foia-request.html
Wednesday, July 28, 2010
re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010
http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html
P.9.21
Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada
Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.
*It also suggests a similar cause or source for atypical BSE in these countries.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II
___________________________________
PRODUCT
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007
CODE
Cattle feed delivered between 01/12/2007 and 01/26/2007
RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing.
REASON
Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
42,090 lbs.
DISTRIBUTION
WI
___________________________________
PRODUCT
Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007
CODE
The firm does not utilize a code - only shipping documentation with commodity and weights identified.
RECALLING FIRM/MANUFACTURER
Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.
REASON
Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
9,997,976 lbs.
DISTRIBUTION
ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm
BANNED MAD COW FEED IN COMMERCE IN ALABAMA (where h-g-BSEalabama mad cow was documented)
Date: September 6, 2006 at 7:58 am PST PRODUCT
a) EVSRC Custom dairy feed, Recall # V-130-6;
b) Performance Chick Starter, Recall # V-131-6;
c) Performance Quail Grower, Recall # V-132-6;
d) Performance Pheasant Finisher, Recall # V-133-6.
CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.
REASON
Dairy and poultry feeds were possibly contaminated with ruminant based protein.
VOLUME OF PRODUCT IN COMMERCE 477.72 tons
DISTRIBUTION AL
______________________________
http://www.fda.gov/bbs/topics/enforce/2006/ENF00968.html
PRODUCT Bulk custom dairy pre-mixes,
Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.
VOLUME OF PRODUCT IN COMMERCE 350 tons
DISTRIBUTION AL and MS
______________________________
PRODUCT
a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;
b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;
c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;
d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;
e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;
f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;
g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6
CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.
REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags
DISTRIBUTION AL, GA, MS, and TN
END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006
###
http://www.fda.gov/bbs/topics/ENFORCE/2006/ENF00964.html
Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006
Date: August 6, 2006 at 6:16 pm PST PRODUCT
a) CO-OP 32% Sinking Catfish, Recall # V-100-6;
b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;
c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;
d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;
e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;
f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;
g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;
h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;
i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;
j) CO-OP LAYING CRUMBLES, Recall # V-109-6;
k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;
l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;
m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE
Product manufactured from 02/01/2005 until 06/06/2006
RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.
REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 125 tons
DISTRIBUTION AL and FL
END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006
###
http://www.fda.gov/bbs/topics/enforce/2006/ENF00963.html
MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II
______________________________
PRODUCT
a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;
b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;
c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;
d) Feather Meal, Recall # V-082-6 CODE
a) Bulk
b) None
c) Bulk
d) Bulk
RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.
REASON
Possible contamination of animal feeds with ruminent derived meat and bone meal.
VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons
DISTRIBUTION Nationwide
END OF ENFORCEMENT REPORT FOR July 12, 2006
###
http://www.fda.gov/bbs/topics/enforce/2006/ENF00960.html
Tuesday, March 2, 2010
Animal Proteins Prohibited in Ruminant Feed/Adulterated/Misbranded Rangen Inc 2/11/10 USA
http://madcowfeed.blogspot.com/2010/03/animal-proteins-prohibited-in-ruminant.html
Monday, March 1, 2010
ANIMAL PROTEIN I.E. MAD COW FEED IN COMMERCE A REVIEW 2010
http://madcowfeed.blogspot.com/2010/03/animal-protien-ie-mad-cow-feed-in.html
Terry S. Singeltary Sr. (Submitted question): Monday, April 5, 2010
Update on Feed Enforcement Activities to Limit the Spread of BSE April 5, 2010
http://madcowfeed.blogspot.com/2010/04/update-on-feed-enforcement-activities.html
Friday, April 23, 2010
Upcoming BSE Webinar on Thursday, April 22, 2010 a review
http://bseusa.blogspot.com/2010/04/upcoming-bse-webinar-on-thursday-april.html
Friday, October 8, 2010
Scientific reasons for a feed ban of meat-and-bone meal, applicable to all farmed animals including cattle, pigs, poultry, farmed fish and pet food
http://madcowfeed.blogspot.com/2010/10/scientific-reasons-for-feed-ban-of-meat.html
O.4.3
Spread of BSE prions in cynomolgus monkeys (Macaca fascicularis) after oral transmission
Edgar Holznagel1, Walter Schulz-Schaeffer2, Barbara Yutzy1, Gerhard Hunsmann3, Johannes Loewer1 1Paul-Ehrlich-Institut, Federal Institute for Sera and Vaccines, Germany; 2Department of Neuropathology, Georg-August University, Göttingen, Germany, 3Department of Virology and Immunology, German Primate Centre, Göttingen, Germany
Background: BSE-infected cynomolgus monkeys represent a relevant animal model to study the pathogenesis of variant Creutzfeldt-Jacob disease (vCJD).
Objectives: To study the spread of BSE prions during the asymptomatic phase of infection in a simian animal model.
Methods: Orally BSE-dosed macaques (n=10) were sacrificed at defined time points during the incubation period and 7 orally BSE-dosed macaques were sacrificed after the onset of clinical signs. Neuronal and non-neuronal tissues were tested for the presence of proteinase-K-resistant prion protein (PrPres) by western immunoblot and by paraffin-embedded tissue (PET) blot technique.
Results: In clinically diseased macaques (5 years p.i. + 6 mo.), PrPres deposits were widely spread in neuronal tissues (including the peripheral sympathetic and parasympathetic nervous system) and in lymphoid tissues including tonsils. In asymptomatic disease carriers, PrPres deposits could be detected in intestinal lymph nodes as early as 1 year p.i., but CNS tissues were negative until 3 – 4 years p.i. Lumbal/sacral segments of the spinal cord and medulla oblongata were PrPres positive as early as 4.1 years p.i., whereas sympathetic trunk and all thoracic/cervical segments of the spinal cord were still negative for PrPres. However, tonsil samples were negative in all asymptomatic cases.
Discussion: There is evidence for an early spread of BSE to the CNS via autonomic fibres of the splanchnic and vagus nerves indicating that trans-synaptical spread may be a time-limiting factor for neuroinvasion. Tonsils were predominantly negative during the main part of the incubation period indicating that epidemiological vCJD screening results based on the detection of PrPres in tonsil biopsies may mostly tend to underestimate the prevalence of vCJD among humans.
P.4.23
Transmission of atypical BSE in humanized mouse models
Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA
Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.
Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.
Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.
Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf
P03.137
Transmission of BSE to Cynomolgus Macaque, a Non-human Primate; Development of Clinical Symptoms and Tissue Distribution of PrPSC
Yamakawa, Y1; Ono, F2; Tase, N3; Terao, K3; Tannno, J3; Wada, N4; Tobiume, M5; Sato, Y5; Okemoto-Nakamura, Y1; Hagiwara, K1; Sata, T5 1National Institure of Infectious diseases, Cell biology and Biochemistry, Japan; 2Corporation for Production and Research Laboratory Primates., Japan; 3National Institure of Biomedical Innovation, Tsukuba Primate Reserch Center, Japan; 4Yamauchi Univ., Veterinary Medicine, Japan; 5National Institure of Infectious diseases, Pathology, Japan
Two of three cynomolgus monkeys developed abnormal neuronal behavioral signs at 30-(#7) and 28-(#10) months after intracerebral inoculation of 200ul of 10% brain homogenates of BSE affected cattle (BSE/JP6). Around 30 months post inoculation (mpi), they developed sporadic anorexia and hyperekplexia with squeal against environmental stimulations such as light and sound. Tremor, myoclonic jerk and paralysis became conspicuous during 32 to 33-mpi, and symptoms become worsened according to the disease progression. Finally, one monkey (#7) fell into total paralysis at 36-mpi. This monkey was sacrificed at 10 days after intensive veterinary care including infusion and per oral supply of liquid food. The other monkey (#10) had to grasp the cage bars to keep an upright posture caused by the sever ataxia. This monkey was sacrificed at 35-mpi. EEG of both monkeys showed diffuse slowing. PSD characteristic for sporadic CJD was not observed in both monkeys. The result of forearm movement test showed the hypofunction that was observed at onset of clinical symptoms. Their cognitive function determined by finger maze test was maintained at the early stage of sideration. However, it was rapidly impaired followed by the disease progression. Their autopsied tissues were immunochemically investigated for the tissue distribution of PrPSc. Severe spongiform change in the brain together with heavy accumulation of PrPSc having the type 2B/4 glycoform profile confirmed successful transmission of BSE to Cynomolgus macaques. Granular and linear deposition of PrPSC was detected by IHC in the CNS of both monkeys. At cerebral cortex, PrPSC was prominently accumulated in the large plaques. Sparse accumulation of PrPSc was detected in several peripheral nerves of #7 but not in #10 monkey, upon the WB analysis. Neither #7 nor #10 monkey accumulated detectable amounts of PrPSc in their lymphatic organs such as tonsil, spleen, adrenal grands and thymus although PrPSc was barely detected in the submandibular lymph node of #7 monkey. Such confined tissue distribution of PrPSc after intracerebral infection with BSE agent is not compatible to that reported on the Cynomolgus macaques infected with BSE by oral or intra-venous (intra-peritoneal) routs, in which PrPSc was accumulated at not only CNS but also widely distributed lymphatic tissues.
P04.27
Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route
Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmézas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Löwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat à l´Energie Atomique, France; 3Instituto Superiore di Sanità, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany
Background: In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.
Aims: The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.
Methods: Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).
Results: In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.
Conclusions: Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.
The work referenced was performed in partial fulfilment of the study “BSE in primates“ supported by the EU (QLK1-2002-01096).
http://www.neuroprion.org/resources/pdf_docs/conferences/prion2007/abstract_book.pdf
Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate.
http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf
WE know now, and we knew decades ago, that 5.5 grams of suspect feed in TEXAS was enough to kill 100 cows.
look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;
Risk of oral infection with bovine spongiform encephalopathy agent in primates
Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.
snip...
BSE bovine brain inoculum
100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg
Primate (oral route)* 1/2 (50%)
Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)
RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)
PrPres biochemical detection
The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and intraperitoneal.
Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula
Published online January 27, 2005
http://www.thelancet.com/journal/journal.isa
It is clear that the designing scientists must also have shared Mr Bradleys surprise at the results because all the dose levels right down to 1 gram triggered infection.
http://web.archive.org/web/20040523230128/www.bseinquiry.gov.uk/files/ws/s145d.pdf
it is clear that the designing scientists must have also shared Mr Bradleyâs surprise at the results because all the dose levels right down to 1 gram triggered infection.
http://web.archive.org/web/20030526212610/http://www.bseinquiry.gov.uk/files/ws/s147f.pdf
Docket No, 04-047-l Regulatory Identification No. (RIN) 091O-AF46 NEW BSE SAFEGUARDS (comment submission)
http://madcowfeed.blogspot.com/2008/07/docket-no-04-047-l-regulatory.html
BSE; MRR; IMPORTATION OF LIVE BOVINES AND PRODUCTS DERIVED FROM BOVINES [Docket No. APHIS-2006-0041] RIN 0579-AC01
http://www.regulations.gov/fdmspublic/ContentViewer?objectId=09000064801f8152&disposition=attachment&contentType=msw8
Docket No. 2003N-0312 Animal Feed Safety System [TSS SUBMISSION]
http://www.fda.gov/ohrms/dockets/dockets/03n0312/03N-0312_emc-000001.txt
Docket Management Docket: 02N-0273 - Substances Prohibited From Use in
Animal Food or Feed; Animal Proteins Prohibited in Ruminant Feed
Comment Number: EC -10
Accepted - Volume 2
http://www.fda.gov/ohrms/dockets/dailys/03/Jan03/012403/8004be07.html
PART 2
http://www.fda.gov/ohrms/dockets/dailys/03/Jan03/012403/8004be09.html
P.9.21
Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada
Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *** It also suggests a similar cause or source for atypical BSE in these countries.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf
Tuesday, December 14, 2010 TAFS1ripmomdod12-14-97hvcjd
Position Paper on Relaxation of the Feed Ban in the EU SUMMARY © TAFS, Berne, 2010
http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/tafs1-position-paper-on-relaxation-of.html
Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject PRO/AH/EDR> Prion disease update 2010 (11)
PRION DISEASE UPDATE 2010 (11)
http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129
Monday, January 17, 2011
MAD COW Update on Feed Enforcement Activities to Limit the Spread of BSE January 13, 2011
January 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/mad-cow-update-on-feed-enforcement.html
Thursday, November 18, 2010
UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS
http://bse-atypical.blogspot.com/2010/11/united-states-of-america-vs-galen-j.html
Wednesday, December 29, 2010
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY PRION END OF YEAR REPORT DECEMBER 29, 2010
http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/transmissible-spongiform-encephalopathy.html
Wednesday, June 16, 2010
Defining sporadic Creutzfeldt-Jakob disease strains and their transmission properties
http://creutzfeldt-jakob-disease.blogspot.com/2010/06/defining-sporadic-creutzfeldt-jakob.html
Tuesday, January 18, 2011
Agent strain variation in human prion disease: insights from a molecular and pathological review of the National Institutes of Health series of experimentally transmitted disease
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/agent-strain-variation-in-human-prion.html
Wednesday, January 19, 2011
EFSA and ECDC review scientific evidence on possible links between TSEs in animals and humans Webnachricht 19 Januar 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/efsa-and-ecdc-review-scientific.html
DID EVERYONE FILL OUT THEIR CJD QUESIONNAIRE FROM THE CDC AND OR THE CJD FOUNDATION ???
Friday, November 30, 2007
CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION
http://cjdquestionnaire.blogspot.com/
Thursday, November 15, 2007
EFSA opinion on the BSE related public health risks of certain animal proteins in animal feed
http://efsaopinionbseanimalprotein.blogspot.com/2007/11/efsa-opinion-on-bse-related-public.html
Terry S. Singeltary Sr. P.O. Box 42 Bacliff, Texas USA 77518
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.