PRION 2011 NEWWORLD MONTREAL CANADA MAY 16 - 19
On behalf of PrioNet Canada and the Alberta Prion Research Institute (APRI), we are delighted to invite you to support and attend the world’s largest prion research congress, PRION 2011, taking place from May 16-19 at the Fairmont Queen Elizabeth Hotel in Montreal, Quebec, Canada.
About PrioNet Canada and the Alberta Prion Research Institute are proud to co-host the world’s largest international prion research conference, PRION 2011, in Montreal, Quebec from May 16-19. This is the first time this conference is being presented outside of Europe. This international PRION 2011 congress will follow in the same tradition as past PRION conferences and aims to welcome over 600 attendees from around the world. PRION 2011 anticipates over 55 speakers and will include an outstanding list of plenary lectures, special sessions, “hot topic” panels, networking activities, and poster presentations.
Prion diseases know no borders, and this congress represents the one annual event to bring together experts from around the world to discuss a broad spectrum of topics, from surveillance and control, to prion structure and function, to diagnostics and therapeutics, ultimately with the goal to enhance the pace of prion research to mitigate the negative impacts of prion disease on society. This meeting will also cover the new connections between prion diseases and other human misfolding protein diseases such as Alzheimer’s, Parkinson’s and others. Prion-like propagation of protein misfolding will be one of four special themes of the meeting.
We look forward to your participation!
~ The PRION 2011 Steering Committee
http://www.prion2011.ca/page.aspx?menu=40&app=276&cat1=659&tp=2&lk=no
snip...
Prion research is a burgeoning and challenging field. In recent years new prion threats, such as the proliferation of chronic wasting disease in wild deer and elk populations on the Canadian prairies, are a growing concern. Furthermore, research is finding more evidence linking the biological mechanisms of prion diseases with other neurodegenerative diseases such as Alzheimer’s or Parkinson’s disease. A better understanding behind prion protein misfolding may impact a whole other class of diseases that afflict millions of people around the world.
http://www.prion2011.ca/files/PRION2011_Prospectus_ENG.pdf
Special Plenary, Dr. Stanley B. Prusiner The PRION 2011 Steering Committee is delighted to announce that Dr. Stanley B. Prusiner is presenting a special plenary at PRION 2011 on May 17.
Dr. Prusiner was awarded the Nobel Prize in 1997 for his discovery of the prion and was recently awarded with the President’s National Medal of Science, the United States' highest honour for science and technology, for his prolific research in this area. Dr. Prusiner is currently the Director of the Institute for Neurodegenerative Diseases at the University of California, San Francisco.
http://www.prion2011.ca/page.aspx?menu=78&app=289&cat1=673&tp=2&lk=no
Delegate Profile We anticipate over 600 attendees from across Canada and around the globe representing academia, government, industry, media, as well as other stakeholder groups. Since PRION 2011 is an open scientific congress that welcomes all relevant stakeholders, the event will provide significant opportunities for sharing knowledge. At past PRION congresses, attendees included representatives from diverse user groups and PRION 2011 will be no different. Participants will include all members of the global prion scientific community including students as well as government officials from provincial and federal agencies in Canada, the US and other countries (i.e.: Health Canada, National Institutes of Health, World Health Organization, etc.), foundations/non-for-profits (i.e.: CJD Foundation), private industry (i.e: Altegen, Biorefinex, Prionics AG, ProMetic, etc.) and other organizations (i.e.: NeuroPrion, PRIORITY, PREVENT, etc.). With the rapidly evolving commonalities emerging between prion disease and human dementias, it is anticipated that there will be significant number of researchers attending PRION 2011 who study mechanisms of human dementias. This diverse participation will maximize opportunities for the effective sharing of information that stakeholders can use to advance their goals.
PROGRAM
http://www.prion2011.ca/page.aspx?menu=78&app=277&cat1=660&tp=2&lk=no
Satellite Events May 16: TSEs and Animals Workshop Mackenzie Room, Fairmont Queen Elizabeth Hotel 12:30 pm until 5:00 pm (with brief reception to follow) Montreal, Quebec
Members of the NeuroPrion Association, PrioNet Canada, Alberta Prion Research Institute, the EU-funded GoatBSE project, and Colorado State University will again host a pre-conference workshop focusing on animal TSEs on the 16th May 2011, just prior to the PRION 2011 congress (Mackenzie Room, Fairmont Queen Elizabeth Hotel). This popular satellite meeting will discuss wide topics of research and surveillance for animal TSEs, and the organizers look forward to bringing researchers together to discuss relevant veterinary and public health issues. Apt presentations will be chosen from interesting abstracts sent to the PRION 2011 congress.
The workshop is free, but you must register by sending an e-mail to mark.zabel@colostate.edu by May 1, 2011. You may also send an abstract in the same email for consideration for a 15-20 minute oral presentation at the workshop. Attendance for this workshop will be capped at 100, so please register early!
http://www.prion2011.ca/page.aspx?menu=78&app=290&cat1=674&tp=2&lk=no
Based on a $35 million investment by the Government of Alberta, the Alberta Prion Research Institute (APRI) supports fundamental, applied and multidisciplinary research geared toward providing solutions and models of policy action that can meet the BSE challenge for the beef and food industries, and similar challenges from other prion diseases as well as other diseases in animals and humans related to protein misfolding. APRI supports outcomesoriented research on prevention, mitigation and treatment of these diseases, and is developing the scientific evidence to inform public policy on solutions and best practices. The initiative supports projects that: • Focus on excellent research and innovation • Develop world-class capacity • Help the Alberta livestock industries • May eventually translate into products, services, and public policies • May help Alberta companies develop, for example, new handling practices, surveillance procedures, diagnostic tests, decontamination technologies • Can be applied beyond Alberta’s borders—nationally and globally FOR MORE INFORMATION, PLEASE VISIT http://www.prioninstitute.ca/
http://www.prion2011.ca/files/PRION2011_Prospectus_ENG.pdf
COMPARE TO USA PRION FUNDING 2011
"which includes the ___elimination___ of Prion activities ($5,473,000),"
All Other Emerging and Zoonotic Infectious Diseases CDC‘s FY 2012 request of $52,658,000 for all other emerging and zoonotic infectious disease activities is a decrease of $13,607,000 below the FY 2010 level, which includes the elimination of Prion activities ($5,473,000), a reduction for other cross-cutting infectious disease activities, and administrative savings. These funds support a range of critical emerging and zoonotic infectious disease programs such Lyme Disease, Chronic Fatigue Syndrome, and Special Pathogens, as well as other activities described below.
http://www.cdc.gov/fmo/topic/Budget%20Information/appropriations_budget_form_pdf/FY2012_CDC_CJ_Final.pdf
PRION MAD COW UDPATE NORTH AMERICA 2011
Wednesday, March 31, 2010
Atypical BSE in Cattle
To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.
This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.
http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2
Thursday, August 12, 2010
Seven main threats for the future linked to prions
First threat
The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed. ***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.
Second threat
snip...
http://www.neuroprion.org/en/np-neuroprion.html
http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html
http://prionpathy.blogspot.com/
http://prionopathy.blogspot.com/
Friday, March 4, 2011
Alberta dairy cow found with mad cow disease
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/alberta-dairy-cow-found-with-mad-cow.html
Wednesday, August 11, 2010
REPORT ON THE INVESTIGATION OF THE SIXTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA
http://bse-atypical.blogspot.com/2010/08/report-on-investigation-of-sixteenth.html
Thursday, August 19, 2010
REPORT ON THE INVESTIGATION OF THE SEVENTEENTH CASE OF BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN CANADA
http://bseusa.blogspot.com/2010/08/report-on-investigation-of-seventeenth.html
Thursday, February 10, 2011
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY REPORT UPDATE CANADA FEBRUARY 2011 a
nd how to hide mad cow disease in Canada Current as of: 2011-01-31
http://madcowtesting.blogspot.com/2011/02/transmissible-spongiform-encephalopathy.html
Wednesday, December 22, 2010
Manitoba veterinarian has been fined $10,000 for falsifying certification documents for U.S. bound cattle and what about mad cow disease ?
http://usdameatexport.blogspot.com/2010/12/manitoba-veterinarian-has-been-fined.html
i wonder if CFIA Canada uses the same OBEX ONLY diagnostic criteria as the USDA ?
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html
Saturday, March 12, 2011
Variant Creutzfeldt-Jakob Disease in a Canadian resident Infectious Diseases News Brief - March 11, 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/variant-creutzfeldt-jakob-disease-in.html
Saturday, March 5, 2011
ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA
Greetings,
WITH more and more atypical Transmissible Spongiform Encephalopathy cases showing up in more and more species here in North America, and the enormous monumental amount of banned mad cow protein in commerce since the infamous partial and voluntary mad cow feed ban inked on paper, with tons and tons crossing back and forth between the USA, Canada, and Mexico, it just does not surprise me of all these "PENDING CLASSIFICATIONS" of human TSE in Canada, and the USA. UK c-BSE transmitted to humans became nvCJD. WE now have atypical strains of BSE in cattle. Mission Texas experiments long ago showed that transmitted USA sheep scrapie to USA bovine, produced a TSE much different than the UK typical c-BSE. SO why would human TSE in the USA look like UK human TSE ? The corruption is mind boggling. The UK saw a suspicious TSE in humans, and science linked it to cattle. North America is awash with human and animal TSE, CJD is rising in young and old, with the same pathology and same symptoms, and none of it is related to the other. isn't that nice. who, what, bestowed such miracles upon North America $
Archive Number 20100405.1091 Published Date 05-APR-2010
Subject PRO/AH/EDR> Prion disease update 1010 (04)
snip...
[Terry S. Singeltary Sr. has added the following comment:
"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.
http://whqlibdoc.who.int/publications/2003/9241545887.pdf
The key word here is diverse. What does diverse mean? If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"
http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101
CANADA CJD UPDATE 2011
CJD Deaths Reported by CJDSS1, 1994-20112 As of January 31, 2011
3. Final classification of 49 cases from 2009, 2010, 2011 is pending.
snip...
http://www.phac-aspc.gc.ca/hcai-iamss/cjd-mcj/cjdss-ssmcj/pdf/stats_0111-eng.pdf
USA 2011
USA
National Prion Disease Pathology Surveillance Center
Cases Examined1
(November 1, 2010)
Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD
1996 & earlier 51 33 28 5 0 0
1997 114 68 59 9 0 0
1998 87 51 43 7 1 0
1999 121 73 65 8 0 0
2000 146 103 89 14 0 0
2001 209 119 109 10 0 0
2002 248 149 125 22 2 0
2003 274 176 137 39 0 0
2004 325 186 164 21 0 13
2005 344 194 157 36 1 0
2006 383 197 166 29 0 24
2007 377 214 187 27 0 0
2008 394 231 205 25 0 0
2009 425 258 215 43 0 0
2010 333 213 158 33 0 0
TOTAL 38315 22656 1907 328 4 3
1 Listed based on the year of death or, if not available, on year of referral;
2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted;
3 Disease acquired in the United Kingdom;
4 Disease was acquired in the United Kingdom in one case and in Saudi Arabia in the other case;
5 Includes 18 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 23 (22 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
http://www.cjdsurveillance.com/pdf/case-table.pdf
Please notice where sporadic CJD cases in 1996 went from 28 cases, to 215 cases in 2009, the highest recorded year to date. sporadic CJD is on a steady rise, and has been since 1996.
I also urge you to again notice these disturbing factors in lines 5 and 6 ;
5 Includes 18 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 23 (22 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
========end=====tss=====2011
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)
(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)
http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html
THE steady rise of sporadic CJD cases in Canada AND USA, with many unusual cases of ''PENDING CLASSIFICATIONS" which have been pending now FOR 3 YEARS. HOW long can this cover-up continue $$$
Saturday, March 5, 2011
MAD COW ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/mad-cow-atypical-cjd-prion-tse-cases.html
The most recent assessments (and reassessments) were published in June 2005 (Table I; 18), and included the categorisation of Canada, the USA, and Mexico as GBR III. Although only Canada and the USA have reported cases, the historically open system of trade in North America suggests that it is likely that BSE is present also in Mexico.
http://www.oie.int/boutique/extrait/06heim937950.pdf
Tuesday, March 16, 2010
COMMONWEALTH OF AUSTRALIA
Hansard
Import restrictions on beef
FRIDAY, 5 FEBRUARY 2010
AUSTRALIA
COMMONWEALTH OF AUSTRALIA
Proof Committee Hansard
RRA&T 2 Senate Friday, 5 February 2010
RURAL AND REGIONAL AFFAIRS AND TRANSPORT
[9.03 am]
BELLINGER, Mr Brad, Chairman, Australian Beef Association
CARTER, Mr John Edward, Director, Australian Beef Association
CHAIR—Welcome. Would you like to make an opening statement?
Mr Bellinger—Thank you. The ABA stands by its submission, which we made on 14 December last year, that the decision made by the government to allow the importation of beef from BSE affected countries is politically based, not science based. During this hearing we will bring forward compelling new evidence to back up this statement. When I returned to my property after the December hearing I received a note from an American citizen. I will read a small excerpt from the mail he sent me in order to reinforce the dangers of allowing the importation of beef from BSE affected countries. I have done a number of press releases on this topic, and this fellow has obviously picked my details up from the internet. His name is Terry Singeltary and he is from Bacliff, Texas. He states, and rightfully so:
You should be worried. Please let me explain. I’ve kept up with the mad cow saga for 12 years today, on December 14th 1997, some four months post voluntary and partial mad cow feed ban in the USA, I lost my mother to the Heidenhain Variant Creutzfeldt-Jakob disease (CJD). I know this is just another phenotype of the infamous sporadic CJDs. Here in the USA, when USA sheep scrapie was transmitted to USA bovine, the agent was not UK BSE—it was a different strain. So why then would human TSE from USA cattle look like UK CJD from UK BSE? It would not. So this accentuates that the science is inconclusive still on this devastating disease. He goes on to state:
The OIE— the International Organisation of Epizootics, the arm of the WTO— is a failed global agent that in my opinion is bought off via bogus regulations for global trade and industry reps. I have done this all these years for nothing but the truth. I am a consumer, I eat meat, but I do not have to sit idly by and see the ignorance and greed of it all while countless numbers of humans and animals are being exposed to the TSE agents. All the USA is interested in is trade, nothing else matters. ...
snip...see full text 110 pages ;
http://www.aph.gov.au/hansard/senate/commttee/S12742.pdf
for those interested, please see much more here ;
http://docket-aphis-2006-0041.blogspot.com/2010/03/commonwealth-of-australia-hansard.html
http://transmissiblespongiformencephalopathy.blogspot.com/2010/02/transmissible-spongiform-encephalopathy.html
Saturday, December 18, 2010
OIE Global Conference on Wildlife Animal Health and Biodiversity - Preparing for the Future (TSE AND PRIONS) Paris (France), 23-25 February 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/oie-global-conference-on-wildlife.html
Tuesday, July 13, 2010
(SEE BEEF PRODUCTS EXPORTED TO AUSTRALIA FROM USA...TSS)
AUSTRALIAN QUESTIONNAIRE TO ASSESS BSE RISK (OIE) Terrestrial Animal Health Code, 2009 and USA export risk factor for BSE to Australia
http://usdameatexport.blogspot.com/2010/07/australian-questionnaire-to-assess-bse.html
Saturday, August 14, 2010
USA NON-SPECIES CODING SYSTEM (BEEF IMPORT EXPORT BSE RISK THERE FROM)
US denies it's illegally sending beef to Australia ?
Friday, 13/08/2010
http://usdameatexport.blogspot.com/2010/08/usa-non-species-coding-system-beef.html
Saturday, June 19, 2010
U.S. DENIED UPGRADED BSE STATUS FROM OIE
http://usdameatexport.blogspot.com/2010/06/us-denied-upgraded-bse-status-from-oie.html
Sunday, August 15, 2010
ATYPICAL BSE NOW LINKED TO CAUSING SPORADIC CJD OVERSEAS Commonwealth of Australia
http://bse-atypical.blogspot.com/2010/08/atypical-bse-now-linked-to-causing.html
Saturday, January 29, 2011
Atypical L-Type Bovine Spongiform Encephalopathy (L-BSE) Transmission to Cynomolgus Macaques, a Non-Human Primate
Jpn. J. Infect. Dis., 64 (1), 81-84, 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/atypical-l-type-bovine-spongiform.html
LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.
This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$
ALABAMA MAD COW g-h-BSEalabama
In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156
http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html
2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006
http://bse-atypical.blogspot.com/2006/08/bse-atypical-texas-and-alabama-update.html
her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).
This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine–human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.
Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA
NATURE|Vol 457|26 February 2009
http://www.nature.com/nature/journal/v457/n7233/full/4571079b.html
Monday, May 11, 2009
Rare BSE mutation raises concerns over risks to public health
http://bse-atypical.blogspot.com/2009/05/rare-bse-mutation-raises-concerns-over.html
IF we go further and look at some of the other documented BSE countries, you will see the increase of sporadic CJD there as well, at the time nvCJD was rising. better surveillance, or potential source transmission ?
http://www.eurocjd.ed.ac.uk/sporadic.htm
P26
TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS
Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA
Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown. We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C. The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.
III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE, DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)
http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf
P02.35
Molecular Features of the Protease-resistant Prion Protein (PrPres) in H-type BSE
Biacabe, A-G1; Jacobs, JG2; Gavier-Widén, D3; Vulin, J1; Langeveld, JPM2; Baron, TGM1 1AFSSA, France; 2CIDC-Lelystad, Netherlands; 3SVA, Sweden
Western blot analyses of PrPres accumulating in the brain of BSE-infected cattle have demonstrated 3 different molecular phenotypes regarding to the apparent molecular masses and glycoform ratios of PrPres bands. We initially described isolates (H-type BSE) essentially characterized by higher PrPres molecular mass and decreased levels of the diglycosylated PrPres band, in contrast to the classical type of BSE. This type is also distinct from another BSE phenotype named L-type BSE, or also BASE (for Bovine Amyloid Spongiform Encephalopathy), mainly characterized by a low representation of the diglycosylated PrPres band as well as a lower PrPres molecular mass. Retrospective molecular studies in France of all available BSE cases older than 8 years old and of part of the other cases identified since the beginning of the exhaustive surveillance of the disease in 20001 allowed to identify 7 H-type BSE cases, among 594 BSE cases that could be classified as classical, L- or H-type BSE. By Western blot analysis of H-type PrPres, we described a remarkable specific feature with antibodies raised against the C-terminal region of PrP that demonstrated the existence of a more C-terminal cleaved form of PrPres (named PrPres#2 ), in addition to the usual PrPres form (PrPres #1). In the unglycosylated form, PrPres #2 migrates at about 14 kDa, compared to 20 kDa for PrPres #1. The proportion of the PrPres#2 in cattle seems to by higher compared to the PrPres#1. Furthermore another PK-resistant fragment at about 7 kDa was detected by some more N-terminal antibodies and presumed to be the result of cleavages of both N- and C-terminal parts of PrP. These singular features were maintained after transmission of the disease to C57Bl/6 mice. The identification of these two additional PrPres fragments (PrPres #2 and 7kDa band) reminds features reported respectively in sporadic Creutzfeldt-Jakob disease and in Gerstmann-Sträussler-Scheinker (GSS) syndrome in humans.
http://www.neuroprion.com/pdf_docs/conferences/prion2007/abstract_book.pdf
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
Vet Pathol 0300985810382672, first published on October 4, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
H. Okada okadahi@affrc.go.jp Prion Disease Research Center, National Institute of Animal Health, Tsukuba, K. Masujin Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Imamaru Prion Disease Research Center, National Institute of Animal Health, Tsukuba, M. Imamura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, Y. Matsuura Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Mohri Prion Disease Research Center, National Institute of Animal Health, Tsukuba, S. Czub Animal Disease Research Institute, Canadian Food Inspection Agency, T. Yokoyama Prion Disease Research Center, National Institute of Animal Health, Tsukuba,
Abstract
To characterize the biological and biochemical properties of H-type bovine spongiform encephalopathy (BSE), a transmission study with a Canadian H-type isolate was performed with bovinized transgenic mice (TgBoPrP), which were inoculated intracerebrally with brain homogenate from cattle with H-type BSE. All mice exhibited characteristic neurologic signs, and the subsequent passage showed a shortened incubation period. The distribution of disease-associated prion protein (PrPSc) was determined by immunohistochemistry, Western blot, and paraffin-embedded tissue (PET) blot. Biochemical properties and higher molecular weight of the glycoform pattern were well conserved within mice. Immunolabeled granular PrPSc, aggregates, and/or plaque-like deposits were mainly detected in the following brain locations: septal nuclei, subcallosal regions, hypothalamus, paraventricular nucleus of the thalamus, interstitial nucleus of the stria terminalis, and the reticular formation of the midbrain. Weak reactivity was detected by immunohistochemistry and PET blot in the cerebral cortex, most thalamic nuclei, the hippocampus, medulla oblongata, and cerebellum. These findings indicate that the H-type BSE prion has biological and biochemical properties distinct from those of C-type and L-type BSE in TgBoPrP mice, which suggests that TgBoPrP mice constitute a useful animal model to distinguish isolates from BSE-infected cattle.
© 2010 Sage Publications, Inc.
http://vet.sagepub.com/content/early/2010/10/02/0300985810382672.abstract
I have been most interested to see IF the h-BSE (h-BSE or g-h-BSEalabama???), but i have been most interested to see if in fact this atypical h-BSE is more virulent than c-BSE, as is the L-BSE (Italian strain) has been documented to be. We know from the studies of Kong et al that h-BSE will transmit to TG human mice;
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf
HOWEVER, as to the virulance of it one way or the other compared to c-BSE and or L-BSE, i don't think no one has said yet or not? interesting this debate of the h-BSE TEXAS (2nd mad cow finally confirmed 7 months after the fact, and an act of Congress), compared to the g-h-BSEalabama strain documented in Alabama, that is identicle to the new human CJD in the USA that is killing the young and old, with clinical long duration, and different symptoms in some cases too, but not related to this ??? ALSO, this IBNC BSE, might this be the g-h-BSEalabama strain?
see full text ;
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
http://bse-atypical.blogspot.com/2010/10/experimental-transmission-of-h-type.html
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II
___________________________________
PRODUCT
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007
CODE
Cattle feed delivered between 01/12/2007 and 01/26/2007
RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing.
REASON
Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
42,090 lbs.
DISTRIBUTION
WI
___________________________________
PRODUCT
Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007
CODE
The firm does not utilize a code - only shipping documentation with commodity and weights identified.
RECALLING FIRM/MANUFACTURER
Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.
REASON
Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
9,997,976 lbs.
DISTRIBUTION
ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm
Thursday, November 18, 2010
UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS
http://bse-atypical.blogspot.com/2010/11/united-states-of-america-vs-galen-j.html
Wednesday, November 17, 2010
MAD COW TESTING FAKED IN USA BY Nebraska INSPECTOR Senator Mike Johanns STATE
http://madcowtesting.blogspot.com/2010/11/mad-cow-testing-faked-in-usa-by.html
Wednesday, November 17, 2010
MAD COW TESTING FAKED IN USA BY Nebraska INSPECTOR Senator Mike Johanns STATE
http://madcowtesting.blogspot.com/2010/11/mad-cow-testing-faked-in-usa-by.html
Wednesday, July 28, 2010
Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report
http://bse-atypical.blogspot.com/2010/07/atypical-prion-proteins-and-ibnc-in.html
IBNC
"All of the 15 cattle tested showed that the brains had abnormally accumulated prion protein."
Saturday, February 28, 2009
NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS "All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009
SEAC 102/2
http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html
Saturday, June 12, 2010
PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse
http://bse-atypical.blogspot.com/2010/06/publication-request-and-foia-request.html
Wednesday, July 28, 2010
re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010
http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html
P.9.21
Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada
Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *It also suggests a similar cause or source for atypical BSE in these countries.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf
Saturday, November 6, 2010
TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU Berne, 2010 TAFS
INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation
http://madcowfeed.blogspot.com/2010/11/tafs1-position-paper-on-position-paper.html
Saturday, June 12, 2010
PUBLICATION REQUEST AND FOIA REQUEST Project Number: 3625-32000-086-05 Study of Atypical Bse
http://bse-atypical.blogspot.com/2010/06/publication-request-and-foia-request.html
Wednesday, July 28, 2010
re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010
http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html
Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 INTRODUCTION The United States Department of Agriculture’s Food Safety and Inspection Service (FSIS) held a public meeting on July 25, 2006 in Washington, D.C. to present findings from the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 (report and model located on the FSIS website: http://www.fsis.usda.gov/Science/Risk_Assessments/index.asp).
Comments on technical aspects of the risk assessment were then submitted to FSIS.
Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, R-CALF USA, Linda A Detwiler, and Terry S. Singeltary.
This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind:
http://www.fsis.usda.gov/PDF/BSE_Risk_Assess_Response_Public_Comments.pdf
Tuesday, February 01, 2011
Sparse PrP-Sc accumulation in the placentas of goats with naturally acquired scrapie
Research article
http://www.biomedcentral.com/1746-6148/7/7/abstract
http://www.biomedcentral.com/content/pdf/1746-6148-7-7.pdf
"In spite of the poorly defined effects of PRNP genetics, scrapie strain, dose, route and source of infection, the caprine placenta may represent a source of infection to progeny and herd mates as well as a source of persistent environmental contamination."
Could this route of infection be the cause of the many cases of Goat scrapie from the same herd in Michigan USA ?
Has this been investigated ?
(Figure 6) including five goat cases in FY 2008 that originated from the same herd in Michigan. This is highly unusual for goats, and I strenuously urge that there should be an independent investigation into finding the common denominator for these 5 goats in the same herd in Michigan with Scrapie. ...
Kind Regards, Terry
SNIP...
Scrapie Nor-98 like case in California FY 2011 AS of December 31, 2010.
Scrapie cases in goats FY 2002 - 2011 AS of December 31, 2010 Total goat cases = 21 Scrapie cases, 0 Nor-98 like Scrapie cases (21 field cases, 0 RSSS cases)
Last herd with infected goats disignated in FY 2008 Michigan 8 cases
http://www.aphis.usda.gov/animal_health/animal_diseases/scrapie/downloads/monthly_scrapie_rpt.pps
UPDATED RESPONSE ON MY CONCERNS OF GOAT SCRAPIE IN MICHIGAN ;
----- Original Message -----
From: "BioMed Central Comments"
To:
Sent: Wednesday, February 16, 2011 4:13 AM
Subject: Your comment on BMC Veterinary Research 2011, 7:7
Your discussion posting "Scrapie cases Goats from same herd USA Michigan" has been rejected by the moderator as not being appropriate for inclusion on the site.
Dear Mr Singeltary,
Thank you for submitting your comment on BMC Veterinary Research article (2011, 7:7). We have read your comment with interest but we feel that only the authors of the article can answer your question about further investigation of the route of infection of the five goats in Michigan. We advise that you contact the authors directly rather than post a comment on the article.
With best wishes,
Maria
Maria Kowalczuk, PhD Deputy Biology Editor BMC-series Journals
BioMed Central 236 Gray's Inn Road London, WC1X 8HB
+44 20 3192 2000 (tel) +44 20 3192 2010 (fax)
W: www.biomedcentral.com E: Maria.Kowalczuk@biomedcentral.com
Any queries about this decision should be sent to comments@biomedcentral.com
Regards
BMC Veterinary Research
SNIP...PLEASE SEE FULL TEXT ;
Tuesday, February 01, 2011
Sparse PrP-Sc accumulation in the placentas of goats with naturally acquired scrapie
Research article
http://scrapie-usa.blogspot.com/2011/02/sparse-prp-sc-accumulation-in-placentas.html
Sunday, March 27, 2011
SCRAPIE USA UPDATE FEBRUARY 2011
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/scrapie-usa-update-february-2011.html
Monday, March 21, 2011
Sheep and Goat BSE Propagate More Efficiently than Cattle BSE in Human PrP Transgenic Mice
http://nor-98.blogspot.com/2011/03/sheep-and-goat-bse-propagate-more.html
Friday, February 11, 2011
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
http://nor-98.blogspot.com/2011/02/atypicalnor98-scrapie-infectivity-in.html
Wednesday, February 16, 2011
IN CONFIDENCE
SCRAPIE TRANSMISSION TO CHIMPANZEES
http://scrapie-usa.blogspot.com/2011/02/in-confidence-scrapie-transmission-to.html
Generation of a new form of human PrPSc in vitro by inter-species transmission from cervids prions
Marcelo A. Barria1, Glenn C. Telling2, Pierluigi Gambetti3, James A. Mastrianni4 and Claudio Soto5,* + Author Affiliations
1 University of Texas Medical School at Houston, United States; 2 University of Kentucky, United States; 3 Case Western Reserve University, United States; 4 University of Chicago, United States; 5 University of Texas Medical School, United States * Corresponding author; email: claudio.soto@uth.tmc.edu
Received October 28, 2010. Accepted January 4, 2011. Copyright © 2011, The American Society for Biochemistry and Molecular Biology
http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long
Our findings demonstrate that cervid PrPSc, upon strain adaptation by serial passages in vitro or in cervid transgenic mice, is capable of converting human PrPC to produce PrPSc with unique biochemical properties, likely representing a new human prion strain. The newly generated CWD-huPrPSc material has been inoculated into transgenic mice expressing human PrP to study infectivity and disease phenotype and this data will be published elsewhere. ...end
PLEASE SEE FULL TEXT ;
Generation of a new form of human PrPSc in vitro by inter-species transmission from cervids prions
Marcelo A. Barria1, Glenn C. Telling2, Pierluigi Gambetti3, James A. Mastrianni4 and Claudio Soto5,* + Author Affiliations
1 University of Texas Medical School at Houston, United States; 2 University of Kentucky, United States; 3 Case Western Reserve University, United States; 4 University of Chicago, United States; 5 University of Texas Medical School, United States * Corresponding author; email: claudio.soto@uth.tmc.edu
Received October 28, 2010. Accepted January 4, 2011. Copyright © 2011, The American Society for Biochemistry and Molecular Biology eneration
http://www.jbc.org/content/early/2011/01/04/jbc.M110.198465.long
Tuesday, January 25, 2011
Generation of a new form of human PrPSc in vitro by inter-species transmission from cervids prions
http://chronic-wasting-disease.blogspot.com/2011/01/generation-of-new-form-of-human-prpsc.html
UPDATED DATA ON 2ND CWD STRAIN
Wednesday, September 08, 2010
CWD PRION CONGRESS SEPTEMBER 8-11 2010
http://chronic-wasting-disease.blogspot.com/2010/09/cwd-prion-2010.html
----- Original Message -----
From:
To: "Terry S. Singeltary Sr."
Cc: ; ; ; ; ; ;
Sent: Friday, February 04, 2011 9:13 AM
Subject: Re: re-THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER
Dear Mr. Singeltary,
Thank you for taking time to read our publication and provide comments. Your concern and your keen attention to the literature on prion diseases are evident and laudable. We share your passion to increase knowledge of chronic wasting disease and to work toward decreasing occurrence of the disease. Open exchange of ideas and viewpoints is what keeps science moving forward.
Best, Margaret Wild
********************************************
Margaret A. Wild, DVM, PhD Chief Wildlife Veterinarian Biological Resource Management Division National Park Service 1201 Oak Ridge Dr., Suite 200 Fort Collins, CO 80525 Office: (970) 225-3593 Cell: (970) 214-2886 Fax: (970) 225-3585
----- Original Message -----
From: Dave Jessup
To: Terry S. Singeltary Sr.
Cc: jwdwda@; margaret_wild@ ; krose@ ; wda@ ; WildlifeDisease@ ; Jenny_Powers@ ; rcarleton@ Sent: Wednesday, January 26, 2011 9:41 AM
Subject: [Norton AntiSpam]Re: re-THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER
Dear Mr. Singeltary,
Thank you for your e-mail and extensive appended snipets from various studies and sources on prion diseases. It appears you have cc'd your e-mail to the senior author of the article in JWD you are concerned about, Dr. Margaret Wild. So, I will leave it to her to correspond with you if she feels that is appropriate.
I am not sure what you are asking the Wildlife Disease Association to do about your concerns. WDA publishes peer reviewd scientific articles in our quarterly Journal of Wildlife Diseases (articles like Dr. Wild's). We also feature a Letters category of articles. These are very distilled observations as opposed to original research, and limited to 1000 words. If you wanted to distill down you conerns about potential prion tranmsmissability to canids and people, you might have a basis for such a letter. They are not the "did too, did not" type of letters to the editor that we might find in a newspaper and instructions on how to prepare one can be found at "Instructions to Authors" on our website.
It also appears that you have cc'd your e-mail to our Editor, Dr. Jim Mills, so he should be aware of your concerns and be looking for such a Letter, if you decide to write one.
I'm sorry for your loss and the suffering of your mother with JCD.
Sincerely,
David A. Jesup WDA Executive Manager
===========================================
FULL TEXT ;
Monday, February 14, 2011
THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER Journal of Wildlife Diseases, 47(1), 2011, pp. 78-93 © Wildlife Disease Association 2011
http://chronic-wasting-disease.blogspot.com/2011/02/role-of-predation-in-disease-control.html
===========END.........TSS===========
http://chronic-wasting-disease.blogspot.com/
Tuesday, March 29, 2011
TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY EXPOSURE SPREADING VIA HOSPITALS AND SURGICAL PROCEDURES AROUND THE GLOBE
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/transmissible-spongiform-encephalopathy.html
Monday, February 7, 2011
FDA's Currently-Recommended Policies to Reduce the Possible Risk of Transmission of CJD and vCJD by Blood and Blood Products 2011 ???
http://tseac.blogspot.com/2011/02/fdas-currently-recommended-policies-to.html
Thursday, August 12, 2010
USA Blood products, collected from a donor who was at risk for vCJD, were distributed July-August 2010
http://creutzfeldt-jakob-disease.blogspot.com/2010/08/usa-blood-products-collected-from-donor.html
Friday, March 25, 2011
Detection of Prion Protein in Urine-Derived Injectable Fertility Products by a Targeted Proteomic Approach
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0017815
here we go again...
Posted by flounder on 29 Mar 2011 at 15:12 GMT
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/detection-of-prion-protein-in-urine.html
Friday, January 21, 2011
Strain-Specific Barriers against Bovine Prions in Hamsters
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/strain-specific-barriers-against-bovine.html
Conclusion
These studies provide experimental evidence that the Stetsonville TME agent is distinct from typical BSE but has phenotypic similarities to L-type BSE in TgOvPrP4 mice. Our conclusion is that L-type BSE is a more likely candidate for a bovine source of TME infection than typical BSE. In the scenario that a ruminant TSE is the source for TME infection in mink, this would be a second example of transmission of a TSE from ruminants to non-ruminants under natural conditions or farming practices in addition to transmission of typical BSE to humans, domestic cats, and exotic zoo animals(37). The potential importance of this finding is relevant to L-type BSE, which based on experimental transmission into humanized PrP transgenic mice and macaques, suggests that L-type BSE is more pathogenic for humans than typical BSE (24,38).
http://www.cdc.gov/eid/content/13/12/1887.htm?s_cid=eid1887_e
Transmissible Mink Encephalopathy TME
In Confidence - Perceptions of unconventional slow virus diseasesof animals in the USA - APRIL-MAY 1989 - G A H Wells
Gerald Wells: Report of the Visit to USA, April-May 1989
snip...
The general opinion of those present was that BSE, as an overt disease phenomenon, _could exist in the USA, but if it did, it was very rare. The need for improved and specific surveillance methods to detect it as recognised...
snip...
It is clear that USDA have little information and _no_ regulatory responsibility for rendering plants in the US...
snip...
3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a _very low profile indeed_. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be _avoided_ in the US _at all costs_...
snip...
please read this old full text document !
http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
To be published in the Proceedings of the Fourth International Scientific Congress in Fur Animal Production. Toronto, Canada, August 21-28, 1988
Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle
R.F. Marsh* and G.R. Hartsough
•Department of Veterinary Science, University of Wisconsin-Madison, Madison, Wisconsin 53706; and ^Emba/Creat Lakes Ranch Service, Thiensville, Wisconsin 53092
ABSTRACT
Epidemiologic investigation of a new incidence of transmissible mink encephalopathy (TME) in Stetsonville, Wisconsin suggests that the disease may have resulted from feeding infected cattle to mink. This observation is supported by the transmission of a TME-like disease to experimentally inoculated cattle, and by the recent report of a new bovine spongiform encephalopathy in England.
INTRODUCTION
Transmissible mink encephalopathy (TME) was first reported in 1965 by Hartsough and Burger who demonstrated that the disease was transmissible with a long incubation period, and that affected mink had a spongiform encephalopathy similar to that found inscrapie-affecied sheep (Hartsough and Burger, 1965; Burger and Hartsough, 1965). Because of the similarity between TME and scrapie, and the subsequent finding that the two transmissible agents were indistinguishable (Marsh and Hanson, 1969), it was concluded that TME most likely resulted from feeding mink scrapie-infecied sheep. The experimental transmission of sheep scrapie to mink (Hanson et al., 1971)confirmed the close association of TME and scrapie, but at the same time provided evidence that they may be different. Epidemiologic studies on previous incidences of TME indicated that the incubation periods in field cases were between six months and one year in length (Harxsough and Burger, 1965). Experimentally, scrapie could not be transmitted to mink in less than one year.To investigate the possibility that TME may be caused by a (particular strain of scrapie which might be highly pathogenic for mink, 21 different strains of the scrapie agent, including their sheep or goat sources, were inoculated into a total of 61 mink. Only one mink developed a progressive neurologic disease after an incubation period of 22 mon..s (Marsh and Hanson, 1979). These results indicated that TME was either caused by a strain of sheep scrapie not yet tested, or was due to exposure to a scrapie-like agent from an unidentified source.
OBSERVATIONS AND RESULTS
A New Incidence of TME. In April of 1985, a mink rancher in Stetsonville, Wisconsin reported that many of his mink were "acting funny", and some had died. At this time, we visited the farm and found that approximately 10% of all adult mink were showing typical signs of TME: insidious onset characterized by subtle behavioral changes, loss of normal habits of cleanliness, deposition of droppings throughout the pen rather than in a single area, hyperexcitability, difficulty in chewing and swallowing, and tails arched over their backs like squirrels. These signs were followed by progressive deterioration of neurologic function beginning with locomoior incoordination, long periods of somnolencein which the affected mink would stand motionless with its head in the corner of the cage, complete debilitation, and death. Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME. Since previous incidences of TME were associated with common or shared feeding practices, we obtained a careful history of feed ingredients used over the past 12-18months. The rancher was a "dead stock" feeder using mostly (>95%) downer or dead dairy cattle and a few horses. Sheep had never been fed.
Experimental Transmission. The clinical diagnosis of TME was confirmed by histopaihologic examination and by experimental transmission to mink after incubation periods of four months. To investigate the possible involvement of cattle in this disease cycle, two six-week old castrated Holstein bull calves were inoculated intracerebrally with a brain suspension from affected mink. Each developed a fatal spongiform encephalopathy after incubation periods of 18 and 19 months.
DISCUSSION
These findings suggest that TME may result from feeding mink infected cattle and we have alerted bovine practitioners that there may exist an as yet unrecognized scrapie-like disease of cattle in the United States (Marsh and Hartsough, 1986). A new bovine spongiform encephalopathy has recently been reported in England (Wells et al.,1987), and investigators are presently studying its transmissibility and possible relationship to scrapie. Because this new bovine disease in England is characterized by behavioral changes, hyperexcitability, and agressiveness, it is very likely it would be confused with rabies in the United Stales and not be diagnosed. Presently, brains from cattle in the United States which are suspected of rabies infection are only tested with anti-rabies virus antibody and are not examined histopathologically for lesions of spongiform encephalopathy. We are presently pursuing additional studies to further examine the possible involvement of cattle in the epidemiology of TME. One of these is the back passage of our experimental bovine encephalopathy to mink. Because (here are as yet no agent-specific proteins or nucleic acids identified for these transmissible neuropathogens, one means of distinguishing them is by animal passage and selection of the biotype which grows best in a particular host. This procedure has been used to separate hamster-adapted and mink-adapted TME agents (Marsh and Hanson, 1979). The intracerebral back passage of the experimental bovine agent resulted in incubations of only four months indicating no de-adaptation of the Stetsonville agent for mink after bovine passage. Mink fed infected bovine brain remain normal after six months. It will be essential to demonstrate oral transmission from bovine to mink if this proposed epidemiologic association is to be confirmed.
ACKNOWLEDGEMENTS
These studies were supported by the College of Agricultural and Life Sciences, University of Wisconsin-Madison and by a grant (85-CRCR-1-1812) from the United States Department of Agriculture. The authors also wish to acknowledge the help and encouragement of Robert Hanson who died during the course of these investigations.
REFERENCES
Burger, D. and Hartsough, G.R. 1965. Encephalopathy of mink. II. Experimental andnatural transmission. J. Infec. Dis. 115:393-399.Hanson, R.P., Eckroade, R.3., Marsh, R.F., ZuRhein, C.M., Kanitz, C.L. and Gustatson,D.P. 1971. Susceptibility of mink to sheep scrapie. Science 172:859-861.Hansough, G.R. and Burger, D. 1965. Encephalopathy of mink. I. Epizoociologic andclinical observations. 3. Infec. Dis. 115:387-392.Marsh, R.F. and Hanson, R.P. 1969. Physical and chemical properties of thetransmissible mink encephalopathy agent. 3. ViroL 3:176-180.Marsh, R.F. and Hanson, R.P. 1979. On the origin of transmissible minkencephalopathy. In Hadlow, W.J. and Prusiner, S.P. (eds.) Slow transmissiblediseases of the nervous system. Vol. 1, Academic Press, New York, pp 451-460.Marsh, R.F. and Hartsough, G.R. 1986. Is there a scrapie-like disease incattle? Proceedings of the Seventh Annual Western Conference for Food AnimalVeterinary Medicine. University of Arizona, pp 20.Wells, G.A.H., Scott, A.C., Johnson, C.T., Cunning, R.F., Hancock, R.D.,Jeffrey, M., Dawson, M. and Bradley, R. 1987. A novel progressive spongiformencephalopathy in cattle. Vet. Rec. 121:419-420.
MARSH
http://collections.europarchive.org/tna/20080102193232/http://www.bseinquiry.gov.uk/files/mb/m09/tab05.pdf
In Confidence - Perceptions of unconventional slow virus diseasesof animals in the USA - APRIL-MAY 1989 - G A H Wells
http://collections.europarchive.org/tna/20080102193705/http://www.bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
Given the large number of strains of scrapie and the possibility that BSE was one of them, it would be necessary to transmit every scrapie strain to cattle separately, to test the hypothesis properly. Such an experiment would be expensive. Secondly, as measures to control the epidemic took hold, the need for the experiment from the policy viewpoint was not considered so urgent. It was felt that the results would be mainly of academic interest.345 3.59 Nevertheless, from the first demonstration of transmissibility of BSE in 1988, the possibility of differences in the transmission properties of BSE and scrapie was clear. Scrapie was transmissible to hamsters, but by 1988 attempts to transmit BSE to hamsters had failed. Subsequent findings increased that possibility.
http://collections.europarchive.org/tna/20080102110838/http://www.bseinquiry.gov.uk/pdf/volume2/chapter3.pdf
.57 The experiment which might have determined whether BSE and scrapie were caused by the same agent (ie, the feeding of natural scrapie to cattle) was never undertaken in the UK. It was, however, performed in the USA in 1979, when it was shown that cattle inoculated with the scrapie agent endemic in the flock of Suffolk sheep at the United States Department of Agriculture in Mission, Texas, developed a TSE quite unlike BSE. 32 The findings of the initial transmission, though not of the clinical or neurohistological examination, were communicated in October 1988 to Dr Watson, Director of the CVL, following a visit by Dr Wrathall, one of the project leaders in the Pathology Department of the CVL, to the United States Department of Agriculture. 33 The results were not published at this point, since the attempted transmission to mice from the experimental cow brain had been inconclusive. The results of the clinical and histological differences between scrapie-affected sheep and cattle were published in 1995. Similar studies in which cattle were inoculated intracerebrally with scrapie inocula derived from a number of scrapie-affected sheep of different breeds and from different States, were carried out at the US National Animal Disease Centre. 34 The results, published in 1994, showed that this source of scrapie agent, though pathogenic for cattle, did not produce the same clinical signs of brain lesions characteristic of BSE.
32 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle Experimentally Infected with the Scrapie Agent, American Journal of Veterinary Research, 56, 606-12
33 YB88/10.00/1.1
http://web.archive.org/web/20040823105233/www.bseinquiry.gov.uk/files/yb/1988/10/00001001.pdf
Wednesday, July 28, 2010
Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA Final report
http://bse-atypical.blogspot.com/2010/07/atypical-prion-proteins-and-ibnc-in.html
Saturday, February 28, 2009
NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS "All of the 15 cattle tested showed that the brains had abnormally accumulated PrP" 2009
SEAC 102/2
http://bse-atypical.blogspot.com/2009/02/new-results-on-idiopathic-brainstem.html
Subject: TME hyper/drowsy, INTER-SPECIES TRANSMISSION CWD and strain properties Date: October 22, 2007 at 12:48 pm PST
Completely Edited Version
PRION ROUNDTABLE
TME hyper/drowsy, INTER-SPECIES TRANSMISSION CWD and strain properties
page 19 of 62. ...tss
Dr. Detwiler: How would you explain that biochemically?
Dr. Bartz: When PRPC is converted to PRPSC, it's misfolded. There have to be many different stable energy states for the misfolded protein. I would hypothesize that mink PRPSC, when it interacts with hamster PRPC, it can fold into several different stable PRPSC molecules. So initially you get the mink interacting with hamster, and then you get a strain produced. I think early on in those first few rounds of replication, what ever strain is produced is probably going to be the predominant one because it has a jump start on the rest of them. On this really complicated western blot, we are mixing hyper and drowsy at known ratios, and basically we can mimic these effects. So it really is the ratio of hyper/drowsy produced by interspecies transmission that's causing this sort of effect.
To summarize inter-species transmission, we have PRPSC interacting with the new host PRPC molecule to change it into PRPSC. We think that, in certain instances, multiple strains can be produced. Intra-species transmission results in competition between these strains and eventual emergence of a predominant strain. We think the initial ratio of strains is important and affects this whole passage history. Probably the replication properties of strains is important. We think that drowsy is the predominant strain produced, but hyper replicates so much faster, it has an advantage.
One really important thing I want to point out here is that strain properties can change upon inter-species transmission. Chronic wasting disease doesn't cause disease when you passage it in a hamster, but if you passage CWD into ferrets, and then take that ferret passage tissue, it can cause disease in hamsters. So inter-species transmission can expand the host range. Also, with the hyper and drowsy, the more hamster passages you do, if you back-passage the inoculum into mink, hyper loses pathogenicity for mink quite quickly, where drowsy retains pathogenicity for mink. The important point I want to make is that, when you're assessing inter-species transmission and you do a transmission study and it's negative, you have to be careful in saying it's negative for the strains you looked at. With this example, it's clear you could take hyper TME, inoculate mink, and they don't come down with the disease, so you might assume hamster prions don't cause disease in mink. That strain doesn't. You have to becareful assessing negative transmission results based on what's known about the strain properties.
The last thing I want to talk about is persistence. This would be the case where PRPSC interacts with the host PRPC and you get really slow replication. The replication agent is so slow that the animal dies of old age before clinical signs can occur.
This study is from Rick Race at NIH, transmitting hamster PRPSC into mice.He collected animals post-infection out to 782 days. None of these animals had clinical signs of prion disease, which is consistent with everything we knew about this species barrier. But when he went back and looked for PRP residue in these animals, he couldn't detect hamster PRP residue, but in a few of these animals with very long times post-infection, he could detect mouse PRP residue.
When he did the second passage, into either hamsters or mice, clinical signs appeared in the second passage. The point is that first inter-species transmission may not cause clinical signs, but you still can get replication to agent that subsequently, when you passage it into the same host species, results in clinical signs of the disease.
In the cell-free conversion studies, hamster PRPSC could not convert mouse PRPSC. Every sort of assay has limitations. The cell-free conversion said it couldn’t replicate. It could, but it was so slow and so long that the assay could not detect them.
I think persistence is very important. If you have inter-species transmission occurring and it doesn't cause clinical disease, and if you take the tissue and keep feeding it to that same host species, you’re going to get amplification and potentially emergence of the disease.
Is PRPSC shed in the environment? I have no idea. Terry can talk about that. Does PRPSC survive in the environment? The studies on deer PRPSC have not been done, but if deer PRPSC behaves like any other PRPSC, yes it can survive in the environment. Can PRPSC reach a new host species? I don'tknow. If they share common pastures, it's a possibility. Can PRPSC get to the central nervous system? Clearly, cattle are susceptible to oral infection, so that's yes. Can deer PRPSC convert cattle PRPC to the hostPRPSC? Self-reconversion experiments would say yes, but very inefficiently. But really, the gold standard is the transmission studies, and there are two of these ongoing right now. One is at the USDA at Ames, and this is intra-cerebral inoculation. They are susceptible to IC infections. This means that once the agent reaches the brain, it can cause disease, but obviously in the field, that's not the natural route. Beth Williams is doing some oral infection studies, but I'm not sure of the status of those.
Dr. Thornsberry: So what you’re saying is that, inter-cerebrally, we can get CWD/PRPSC conversion, but that has not occurred, to anyone's knowledge, in the natural route.
Dr. Bartz: Right. IC inoculation is used because it has a short incubation period. It only tells us that replication can occur once the agent reaches the brain.
Dr. Thornsberry: Let's hypothesize that I had some cattle on the eastern slope and they were in the same pasture with elk with CWD. If a cow had been exposed to the PRP Scrapie and it did develop disease four years later, would that look like BSE? Would there be a way to determine if it came from CWD?
Dr. Bartz: The IC studies in cattle indicate it does not look like BSE. The clinical signs of the IC/CWD cattle are more like downer cattle, and not aggressive. As far as finding the source of a bovine TSE, the gold standard is the lesion profile study where you take cattle tissue and inoculate it into mice with appropriate controls, wait until the mice come down, and do the lesion profiling.
Dr. Thornsberry: There were two cases in Japan, but they indicated that tissue was not classical BSE as seen in Europe. Have you heard anything about that?
Dr. Bartz: This is based on differences on migration and the glycoform ratio of PrPSc.
Dr. Detwiler: Canada based that question because the herd that that animal came from was in Saskatchewan, in an area with CWD. That was one of the questions they faced right off the bat: is this BSE or is this some kind of transmission from CWD-infected elk in the area? Not only the histological lesions were classic BSE lesions, but clinically it's very difficult because if you miss the other behavioral changes, which this owner did. It was someone who had been a catfish farmer. He missed the early signs. The animal presented to slaughter as a down animal, non-responsive. Clinically it looked like just a down cow, but they did send that on to the United Kingdom and they did do some comparison glycoform patterns. Those haven’t been validated, but at least on preliminary work, it looked like classical BSE.
The Japanese case was a 23-month-old which was born in October. Their scientists say the western blot pattern looked different. The most recent case, which was a 21-month-old, looked more like classic BSE. The Italian cases were older animals, 15 and 16 years of age. But is it methodology? Is it really standard? That has to be sorted out before too much can be said.
Dr. Bartz: Glycoform ratio is dependent on very technical matters, what antibodies you use, what detection system you use. Those have to be standardized before you can start comparing from one lab to another.
Dr. Detwiler: The Japanese used a western blot they'd developed in their lab. It can't be compared across laboratories.
Dr. Bartz: That's problematic.
Accomplished this day, Wednesday, December 11, 2003, Denver, Colorado
The roundtable presentations and discussions were recorded. A transcript will be made available to the Academy of Veterinary Consultants, the American Association of Bovine Practitioners, and the Colleges of Veterinary Medicine throughout the United States and Canada. A condensed version translated for the livestock industry will be made available to educate livestock producers about prion related diseases.
http://www.r-calfusa.com/Newsletter/2004January.pdf
SEE FULL TEXT TME
http://transmissible-mink-encephalopathy.blogspot.com/
http://transmissiblespongiformencephalopathy.blogspot.com/2011/01/strain-specific-barriers-against-bovine.html
BRITISH MEDICAL JOURNAL
BMJ 1999;319:1312 (Published 13 November 1999)
Re: vCJD in the USA * BSE in U.S. 15 November 1999
Terry S Singeltary
snip...
It's their move, it's CHECK, but once CHECKMATE has been called, how many thousands or millions, will be at risk or infected or even dead. You can't play around with these TSE's. I cannot stress that enough. They are only looking at body bags, and the fact the count is so low. But, then you have to look at the fact it is not a reportable disease in most states, mis-diagnosis, no autopsies performed. The fact that their one-in-a- million theory is a crude survey done about 5 years ago, that's a joke, under the above circumstances. A bad joke indeed........
snip...
http://www.bmj.com/content/319/7220/1312.3.extract/reply#bmj_el_5406
BRITISH MEDICAL JOURNAL
BMJ 2000;320:8 doi:10.1136/bmj.320.7226.8/b (Published 1 January 2000)
U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well...
2 January 2000
Terry S Singeltary
In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.
The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;
"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."
Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.
Something else I find odd, page 16;
"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."
A few more factors to consider, page 15;
snip...see full text ;
http://www.bmj.com/content/320/7226/8.3.extract/reply#bmj_el_6117
Vol. 285 No. 6, February 14, 2001
Letters
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
JOURNAL OF NEUROLOGY
doi: 10.1212/01.WNL.0000036913.87823.D6 Neurology January 28, 2003 vol. 60 no. 2 176-181
MARCH 26, 2003
RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States
Email Terry S. Singeltary:
[log in to unmask]
I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?
http://www.neurology.org/content/60/2/176.abstract/reply#neurology_el_535
Newsdesk
The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003
doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI
Tracking spongiform encephalopathies in North America
Xavier Bosch
"My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem." 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)-the relative of mad cow disease seen among deer and elk in the USA. Although his feverish.
http://linkinghub.elsevier.com/retrieve/pii/S1473309903007151
http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(03)00715-1/fulltext
http://www.mdconsult.com/das/article/body/180784492-2/jorg=journal&source=&sp=13979213&sid=0/N/368742/1.html?issn=14733099
2010
PLOS one
PLoS ONE 5(1): e8521. doi:10.1371/journal.pone.0008521
Human Prion Diseases in the United States
Robert C. Holman1*, Ermias D. Belay1, Krista Y. Christensen1, Ryan A. Maddox1, Arialdi M. Minino2, Arianne M. Folkema1, Dana L. Haberling1, Teresa A. Hammett1, Kenneth D. Kochanek2, James J. Sejvar1, Lawrence B. Schonberger1
1 Division of Viral and Rickettsial Diseases, National Center for Zoonotic, Vector-borne and Enteric Diseases, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services (USDHHS), Atlanta, Georgia, United States of America, 2 Division of Vital Statistics, National Center for Health Statistics, Centers for Disease Control and Prevention (CDC), U.S. Department of Health and Human Services (USDHHS), Hyattsville, Maryland, United States of America
http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0008521&annotationId=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd;jsessionid=13BCC1197262A812C497DE9E37D2F398.ambra01
re-Human Prion Diseases in the United States
Posted by flounder on 01 Jan 2010 at 18:11 GMT
I kindly disagree with your synopsis for the following reasons ;
http://www.plosone.org/annotation/listThread.action?inReplyTo=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd&root=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd
http://creutzfeldt-jakob-disease.blogspot.com/2010/01/human-prion-diseases-in-united-states.html
Manuscript Draft Manuscript Number:
Title: HUMAN and ANIMAL TSE Classifications i.e. mad cow disease and the UKBSEnvCJD only theory
Article Type: Personal View Corresponding
Author: Mr. Terry S. Singeltary, Corresponding Author's Institution: na
First Author: Terry S Singeltary, none
Order of Authors: Terry S Singeltary, none; Terry S. Singeltary
Abstract:
TSEs have been rampant in the USA for decades in many species, and they all have been rendered and fed back to animals for human/animal consumption. I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2007.
http://www.regulations.gov/fdmspublic/ContentViewer?objectId=090000648027c28e&disposition=attachment&contentType=pdf
http://cjdmadcowbaseoct2007.blogspot.com/2008/06/human-and-animal-tse-classifications-ie.html
THE PATHOLOGICAL PROTEIN
BY Philip Yam
Yam Philip Yam News Editor Scientific American www.sciam.com
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
CHAPTER 14
Laying Odds
Are prion diseases more prevalent than we thought?
Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn't think bovine spongiform encephalopathy was a zoonosis-an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?
Revisiting Sporadic CJD
It's not hard to get Terry Singeltary going. "I have my conspiracy theories," admitted the 49-year-old Texan.1 Singeltary is probably the nation's most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union's Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.
Singeltary has similar inclinations. ...
http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=the+pathological+protein+laying+odds+It%E2%80%99s+not+hard+to+get+Terry+Singeltary+going&source=bl&ots=um0PFAZSZD&sig=JWaGR7M7-1WeAr2qAXq8D6J_jak&hl=en&ei=MhtjS8jMJM2ztgeFoa2iBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAcQ6AEwAA#v=onepage&q=&f=false
http://www.springerlink.com/content/r2k2622661473336/fulltext.pdf?page=1
http://www.thepathologicalprotein.com/
DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv: http://service.spiegel.de/digas/find?DID=18578755
"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.
Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.
"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...
http://www.spiegel.de/spiegel/print/d-18578755.html
http://wissen.spiegel.de/wissen/image/show.html?did=18578755&aref=image024/E0108/SCSP200100901440145.pdf&thumb=false
http://service.spiegel.de/digas/servlet/find/DID=18578755
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?
28 Mar 01
Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.
As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.
Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.
http://www.newscientist.com/article/mg16922840.300-like-lambs-to-the-slaughter.html
14th ICID International Scientific Exchange Brochure -
Final Abstract Number: ISE.114
Session: International Scientific Exchange
Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009
T. Singeltary
Bacliff, TX, USA
Background:
An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.
Methods:
12 years independent research of available data
Results:
I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.
Conclusion:
I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.
http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf
Wednesday, January 5, 2011
ENLARGING SPECTRUM OF PRION-LIKE DISEASES Prusiner Colby et al 2011
Prions
David W. Colby1,* and Stanley B. Prusiner1,2
http://betaamyloidcjd.blogspot.com/2011/01/enlarging-spectrum-of-prion-like.html
http://betaamyloidcjd.blogspot.com/
Wednesday, March 9, 2011
27 U.S. Senators want to force feed Japan Highly Potential North America Mad Cow Beef TSE PRION CJD
March 8, 2011
President Barack Obama The White House
1600 Pennsylvania Avenue, W Washington, DC 20500
Dear President Obama:
http://transmissiblespongiformencephalopathy.blogspot.com/2011/03/27-us-senators-want-to-force-feed-japan.html
layperson
Terry S. Singeltary Sr.
P.O. Box 42
Bacliff, Texas USA 77518
flounder9@verizon.net
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.