Wednesday, April 25, 2012

4th MAD COW DISEASE U.S.A. CALIFORNIA ATYPICAL L-TYPE BSE 2012

so, USDA et al accidently find two atypical mad cows in Texas and Alabama during the infamous enhanced BSE cover up back in 2004 and 2005, and then shut the testing down to numbers so low, it’s almost impossible to find another mad cow case, unless your country is to a point that mad cow disease can be found in 1 in 40,000, and STILL FIND MAD COW DISEASE, HOUSTON, WE HAVE A PROBLEM. ...


PLEASE UNDERSTAND, the USDA et al are lying about atypical BSE being a spontaneous mutation, NOT caused by feed. spontaneous BSE has NEVER been proven in any natural field case of BSE. feed is the most likely route. ...tss




"Government officials expressed confidence that contaminated food was not the source, saying the animal had atypical L-type BSE, a rare variant not generally associated with an animal consuming infected feed."








Emerg Infect Dis. 2006 December; 12(12): 1816–1821.


doi: 10.3201/eid1212.060965


PMCID: PMC3291375


Copyright notice


On the Question of Sporadic or Atypical Bovine Spongiform Encephalopathy and Creutzfeldt-Jakob Disease


Paul Brown,* Lisa M. McShane,† Gianluigi Zanusso,‡ and Linda Detwiler§


*Bethesda, Maryland, USA;


†National Institutes of Health, Bethesda, Maryland, USA;


‡University of Verona, Verona, Italy,


§Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA


Corresponding author.


Address for correspondence: Paul Brown, 7815 Exeter Rd, Bethesda, MD 20814, USA; email: paulwbrown@comcast.net



SNIP...






Although the origin of the epidemic is thought to have been caused by a species-crossing contamination by sheep scrapie during the course of rendering and recycling carcass meat and bone meal as cattle feed, an alternative hypothesis suggested an origin in a similarly recycled case of spontaneously occurring disease in cattle. The pros and cons of these competing ideas have been argued elsewhere (2,3), and neither will ever be convincingly proved or disproved. Thus, the phenomenon of spontaneous disease remained in limbo until the recent discovery of "atypical" strains of BSE reopened the question. In this article we consider the importance of atypical BSE within the overall concept of sporadic (spontaneous) disease and whether such cases, if they exist, could account for at least some cases of apparently sporadic Creutzfeldt-Jakob (CJD) in humans.




Other Sections▼







Sporadic BSE



Obviously, the ideal country in which to examine the question of sporadic BSE would have a large national herd that was guaranteed never to have been exposed to environmental sources of infection. Such an ideal will never be realized. Until recently, the United States appeared to have at least approached the ideal by having a large national herd, an adequate testing program, and an apparently small risk for contamination by imported cattle or cattle feed. That position was made vulnerable in late 2003 by the discovery of a case of BSE imported from Canada and was eliminated altogether by the subsequent discovery of 2 indigenously infected animals in widely separate regions of the country. Although the 2 indigenous cases might represent sporadic disease, the continuing identification of cases in western Canada, coupled with a history of substantial numbers of cattle imported from Canada into the United States (both indigenous US animals had the same molecular "signature" as the most recent Canadian case), makes it difficult to ignore the possibility of undetected instances of feed contamination from imported cattle and recycled infectious carcasses.


At present, the 2 best countries in which to undertake testing programs would be Argentina and Australia; both have large national herds (≈50 million and 30 million animals, respectively), and both are considered to be free of orally acquired BSE infections, on the basis of importation history, nutritional practices, and adequacy of surveillance (4). Even in these countries, however, the discovery of a case of BSE could not be guaranteed to be spontaneous because of the widespread global distribution of potentially infected cattle and cattle feed and the vagaries of international trade: imperfect record keeping, lack of compliance, and just plain deception.



As previously stated most of the characteristics of atypical BSE have not been defined. In addition to the origin, the risk to other cattle by means of natural transmission, the risk to humans and other animal species suck as chickens and pigs is still unknown as is the distribution of infectivity throughout the body of a bovine. There is little information on clinical manifestation if it occurs at all in certain of the cases. Documented L cases have been diagnosed from samples taken from older ‘’healthy’’ cattle presented for routine slaughter.



While additional surveillance and research is being conducted, it is important for policy make to consider the implications of atypical BSE. They may need to rethink what populations are appropriate targets. It would probably be unwise to prematurely lessen or discontinue the current BSE protection measures.






SNIP...














Atypical BSE: What is it and what is the significance



Linda A. Detwiler, Paul Brown, Lisa M. McShane, and Gianluigi Zanusso





When atypical cases were first reported there was some speculation that these may merely be protein accumulation disorders associated with old age. It has now been shown that both the Land H types of atypical BSE are at least experimentally transmissible. Homogenates from L cases have been transmitted to bovinized transgenic mice, humanized transgenic mice, Cynomolgus monkeys and 1 breed of cattle (Buschmann et al. 2006; Book of abstracts (2006), International Conference on Prion Diseases, Turin, Italy). H cases have been transmitted to bovinized transgenic (Tgbov) and ovinized transgenic mice (Béringue et al. 2006). The incubation times for atypical L cases of BSE were shorter in the Tgbov mice than classical BSE inoculated into Tgbov mice and the H cases had longer incubations.



A variation or mutation of the classical BSE strain 􀂙 A different route of exposure or exposure at an older age 􀂙 A strain of Scrapie transmitted to cattle 􀂙 Sporadic or a spontaneous occurrence of BSE

At his point in time, there is no evidence to conclude that any of the theories are or are not a possibility. There is considerable interest in the sporadic theory. If a form of BSE were to ocnaturally, this may suggest that certain control and prevention measure would have to remain in place indefinitely. Proving or disproving the occurrence of a relatively rare sporadic disease poses a significant challenge. It would require between 3 and 4.5 million tests performed on brain samples randomly taken from cattle over 7 years of age in a country with no evidencrisk from orally acquired BSE. It is unlikely that any country would have the will or resources to perform such a study. Lacking this type of evidence, systematic surveillance over a long time period may provide evidence about the nature of atypical BSE.






snip...see full text ;







When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.





Wednesday, March 31, 2010

Atypical BSE in Cattle

To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE.

In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.

This study will contribute to a correct definition of specified risk material (SRM) in atypical BSE. The incumbent of this position will develop new and transfer existing, ultra-sensitive methods for the detection of atypical BSE in tissue of experimentally infected cattle.
http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2




Moreover, transmission experiments to non-human primates suggest that some TSE agents in addition to Classical BSE prions in cattle (namely L-type Atypical BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic wasting disease (CWD) agents) might have zoonotic potential.

snip...
http://www.efsa.europa.eu/en/efsajournal/pub/e991.htm?emt=1 http://www.efsa.europa.eu/en/efsajournal/doc/e991.pdf


Thursday, August 12, 2010

Seven main threats for the future linked to prions

First threat

The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.

***Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.

Second threat

snip...
http://www.neuroprion.org/en/np-neuroprion.html



Saturday, June 25, 2011

Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque

Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque

Emmanuel Comoy,1,† Valérie Durand,1 Evelyne Correia,1 Sophie Freire,1 Jürgen Richt,2 Justin Greenlee,3 Juan-Maria Torres,4 Paul Brown,1 Bob Hills5 and Jean-Philippe Deslys1

1Atomic Energy Commission; Fontenay-aux-Roses, France; 2Kansas State University; Manhattan, KS USA; 3USDA; Ames, IA USA; 4INIA; Madrid, Spain; 5Health Canada; Ottawa, ON Canada†Presenting author; Email: emmanuel.comoy@cea.fr

The epidemiology of Transmissible mink encephalopathy (TME) indicates an alimentary origin. Several inter-species transmission experiments have not succeeded in establishing with certainty any natural reservoir of this prion strain, although both ovine and bovine sources have been suspected. Cattle exposed to TME develop a spongiform encephalopathy that is distinct from classical Bovine Spongiform Encephalopathy (c-BSE).

Inoculation of c-BSE to cynomolgus macaque provided early evidence of a possible risk to humans, and remains an important model to define the risk of both primary (oral transmission from cattle to primate) and secondary (intravenous intra-species transmission) exposures. We have also evaluated the transmissibility of other cattle prion strains to macaques, including L- and H- atypical forms of BSE, namely BSE-L and BSE-H, and cattle-adapted TME.

BSE-L induced a neurological disease distinct from c-BSE. Peripheral exposures demonstrate the transmissibility of BSE-L by oral, intravenous, and intra-cerebral routes, with incubation periods similar to c-BSE. Cattle-adapted TME also induced a rapid disease in cynomolgus macaque. The clinical features, lesion profile, and biochemical signature of the induced disease was similar to the features observed in animals exposed to BSE-L, suggesting a link between the two prion strains. Secondary transmissions to a common host (transgenic mouse overexpressing bovine PrP) of cattle-TME and BSE-L before or after passage in primates induced diseases with similar incubation periods: like the c-BSE strain, these cattle strains maintained their distinctive features regardless of the donor species and passages.

If the link between TME and BSE-L is confirmed, our results would suggest that BSE-L in North America may have existed for decades, and highlight a possible preferential transmission of animal prion strains to primates after passage in cattle.



=====================end...tss====================


link url not available, please see PRION 2011 ;
http://www.prion2011.ca/files/PRION_2011_-_Posters_(May_5-11).pdf


Volume 13, Number 12–December 2007 Research

Phenotypic Similarity of Transmissible Mink Encephalopathy in Cattle and L-type Bovine Spongiform Encephalopathy in a Mouse Model

Thierry Baron,* Anna Bencsik,* Anne-Gaëlle Biacabe,* Eric Morignat,* andRichard A. Bessen†*Agence Française de Sécurité Sanitaire des Aliments–Lyon, Lyon, France; and†Montana State University, Bozeman, Montana, USA

Abstract

Transmissible mink encepholapathy (TME) is a foodborne transmissible spongiform encephalopathy (TSE) of ranch-raised mink; infection with a ruminant TSE has been proposed as the cause, but the precise origin of TME is unknown. To compare the phenotypes of each TSE, bovine-passaged TME isolate and 3 distinct natural bovine spongiform encephalopathy (BSE) agents (typical BSE, H-type BSE, and L-type BSE) were inoculated into an ovine transgenic mouse line (TgOvPrP4). Transgenic mice were susceptible to infection with bovine-passaged TME, typical BSE, and L-type BSE but not to H-type BSE. Based on survival periods, brain lesions profiles, disease-associated prion protein brain distribution, and biochemical properties of protease-resistant prion protein, typical BSE had a distint phenotype in ovine transgenic mice compared to L-type BSE and bovine TME.The similar phenotypic properties of L-type BSE and bovine TME in TgOvPrP4 mice suggest that L-type BSE is a much more likely candidate for the origin of TME than is typical BSE.

snip...

Conclusion

These studies provide experimental evidence that the Stetsonville TME agent is distinct from typical BSE but has phenotypic similarities to L-type BSE in TgOvPrP4 mice. Our conclusion is that L-type BSE is a more likely candidate for a bovine source of TME infection than typical BSE. In the scenario that a ruminant TSE is the source for TME infection in mink, this would be a second example of transmission of a TSE from ruminants to non-ruminants under natural conditions or farming practices in addition to transmission of typical BSE to humans, domestic cats, and exotic zoo animals(37). The potential importance of this finding is relevant to L-type BSE, which based on experimental transmission into humanized PrP transgenic mice and macaques, suggests that L-type BSE is more pathogenic for humans than typical BSE (24,38).
http://www.cdc.gov/eid/content/13/12/1887.htm?s_cid=eid1887_e




PLoS One. 2012; 7(2): e31449.


Published online 2012 February 21. doi: 10.1371/journal.pone.0031449


PMCID: PMC3283643


Copyright Suardi et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.



Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy



Silvia Suardi,#1 Chiara Vimercati,#1 Cristina Casalone,#2 Daniela Gelmetti,3 Cristiano Corona,2 Barbara Iulini,2 Maria Mazza,2 Guerino Lombardi,3 Fabio Moda,1 Margherita Ruggerone,1 Ilaria Campagnani,1 Elena Piccoli,1 Marcella Catania,1 Martin H. Groschup,4 Anne Balkema-Buschmann,4 Maria Caramelli,2 Salvatore Monaco,5 Gianluigi Zanusso,5 and Fabrizio Tagliavini1*


1Instituto Di Ricoveroe Cura a Carattere Scientifico (IRCCS), Foundation “Carlo Besta” Neurological Institute, Milano, Italy


2Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy


3Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy


4Friedrich-Loeffler-Institut, Greifswald, Insel Riems, Germany


5Policlinico G.B. Rossi, University of Verona, Verona, Italy


Jason Bartz, Editor


Creighton University, United States of America


#Contributed equally.


* E-mail: ftagliavini@istituto-besta.it


Conceived and designed the experiments: SS CV C. Casalone DG C. Corona GL SM M. Caramelli GZ FT. Performed the experiments: SS CV DG C. Corona BI MM FM MR IC EP M. Catania. Analyzed the data: SS CV C. Casalone DG C. Corona GL SM MHG AB M. Caramelli GZ FT. Contributed reagents/materials/analysis tools: SS CV C. Casalone DG C. Corona GL SM MHG AB M. Caramelli GZ FT. Wrote the paper: SS CV C. Casalone DG C. Corona GL SM MHG AB M.Caramelli GZ FT.


Received December 13, 2011; Accepted January 8, 2012.




Abstract



The amyloidotic form of bovine spongiform encephalopathy (BSE) termed BASE is caused by a prion strain whose biological properties differ from those of typical BSE, resulting in a clinically and pathologically distinct phenotype. Whether peripheral tissues of BASE-affected cattle contain infectivity is unknown. This is a critical issue since the BASE prion is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible. We carried out bioassays in transgenic mice overexpressing bovine PrP (Tgbov XV) and found infectivity in a variety of skeletal muscles from cattle with natural and experimental BASE. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases (~70% versus ~10%, respectively). This difference was likely related to different prion titers, possibly due to different stages of disease in the two conditions, i.e. terminal stage in experimental BASE and pre-symptomatic stage in natural BASE. The neuropathological phenotype and PrPres type were consistent in all affected mice and matched those of Tgbov XV mice infected with brain homogenate from natural BASE. The immunohistochemical analysis of skeletal muscles from cattle with natural and experimental BASE showed the presence of abnormal prion protein deposits within muscle fibers. Conversely, Tgbov XV mice challenged with lymphoid tissue and kidney from natural and experimental BASE did not develop disease. The novel information on the neuromuscular tropism of the BASE strain, efficiently overcoming species barriers, underlines the relevance of maintaining an active surveillance.



snip...



Introduction



In 2004 an atypical form of bovine spongiform encephalopathy (BSE) termed BASE or BSE-L was identified in Italy through active surveillance [1] and subsequently recognized in different European countries, North America, Canada and Japan [1]–[6]. BASE affects relatively old cattle (all cases were older than 9 years) and differs from BSE with regard to the neuropathological phenotype, the biochemical profile of the disease-associated prion protein (PrPSc) and the biological properties of the agent strain [1], [3], [7]. The neuropathological hallmark of BASE is the presence of PrP amyloid plaques and the preferential involvement of olfactory areas, hippocampus and thalamus with a relatively low involvement of the brainstem, as opposed to classical BSE. The molecular signature of BASE is a PrPSc type distinguished by a protease-resistant core (PrPres) of lower molecular mass than BSE-PrPSc, with predominance of the monoglycosylated protein band by western immunoblot.



Intra-species transmission revealed that the clinical picture of BASE differs substantially from that of BSE, being characterized by mental dullness and amyotrophy rather than hyper-reactivity and aggressiveness [8], [9]. As a consequence, the recognition of BASE in vivo can be difficult and may represent a major challenge for passive surveillance. Transmission studies to transgenic mice overexpressing bovine PrP (Tgbov mice) showed that the BASE strain is more aggressive than the BSE strain [10]. Furthermore, Tg mice overexpressing human PrP as well as non-human primates are more susceptible to infection with BASE than with BSE [11]–[14]. Overall these data raise concern about the potential risk of transmission of BASE to humans and it is urgent to determine the presence and distribution of infectivity in peripheral tissues of BASE-affected cattle. To investigate this issue, we inoculated Tgbov mice with different peripheral tissues from experimentally and naturally BASE-affected cattle and found that various skeletal muscles contained infectivity and PrP-immunoreactive deposits within individual fibers.



snip...



Discussion



This is the first report on the occurrence and distribution of infectivity in peripheral tissues of BASE-affected cattle. We found that different skeletal muscles (i.e., M. longissimus dorsi, M. intercostalis and M. gluteus) from experimental and natural BASE carried infectivity, whereas spleen, cervical lymph node and kidney did not, as highly susceptible Tgbov XV mice did not develop disease up to 850 days after challenge. Noteworthy, all BASE muscles used for inoculation transmitted disease, although the attack rate differed between experimental and natural cases. This difference is likely related to different prion titers in the two conditions, possibly due to different stages of disease. In fact, the experimentally infected cattle was sacrificed at the terminal stage when clinical signs were severe [8], while the cattle with natural BASE was identified through active surveillance at a pre-symptomatic stage.



Infectivity in skeletal muscles has been detected in various natural and experimental prion diseases, including sheep affected by classical and Nor/98 atypical scrapie [17], deer with chronic wasting disease [18] and rodent models of scrapie [19]. A large pathogenesis study on BSE-infected cattle in the UK failed to detect infectivity in muscle tissue at any time during the course of the disease by inoculation of inbred mice [20]. However, in a subsequent study with Tgbov XV mice, M. semitendinosus from a field case of clinically symptomatic BSE transmitted disease to one out of ten inoculated rodents. This low amount of infectivity was tentatively related to the terminal nerve fibres [21].



A major clinical feature of cattle experimentally infected with BASE is amyotrophy, as a result of motor neuron disease [8]. Although we were unable to detect PrPSc in the peripheral nerves of infected cattle and follow the kinetics of PrP spreading through the neural pathway, a study of intra-species transmission of a Japanese case of BASE showed that PrPres was first detectable by immunoblot in the nerve roots and subsequently in the peripheral nerves [22]. PrPres deposition in skeletal muscles has been found in a variety of prion diseases, including experimental scrapie in hamsters [23], natural scrapie in sheep [24], and mouse and primate models of BSE and CJD [25]–[27]. These reports agree that PrPres in muscle tissue is associated with terminal nerve endings.



In our study, immunohistochemistry showed the presence of amorphous or granular, small PrP deposits in different skeletal muscles from both experimental and natural BASE-affected cattle. PrP aggregates were found in isolated muscle fibers with a scattered distribution which was at variance with the topology of PrPres reported in the previous studies [23], [24], [26], [27]. Noteworthy, identical results were obtained using two different fixatives and immunostaining protocols. Since PrPC is expressed in bovine muscles and skeletal muscles are intrinsically capable of propagating prions [19], [28], we argue that PrPSc deposition in BASE muscles might be the result of a primary PrP replication through a neural-independent pathway. This possibility has been previously considered in a patient affected by sporadic CJD and inclusion body myositis where PrPC to PrPSc conversion occurred in skeletal muscle [29].



The limited number and irregular distribution of PrP positive fibers within a muscle sample accounts for the absence of a detectable PrPres signal on Western blot. The inhomogeneous distribution of PrPres and infectivity among different muscles of the same animal and within the same muscle has been previously observed in mice and in primates infected with different prion strains. These findings have been tentatively related to biochemical differences in skeletal muscles of different body regions and/or number of nerve endings [19], [25], [26].



In the present study, Tgbov XV mice challenged with BASE muscles reproduced the monoglycosylated-dominant PrPres type of BASE as well as a histopathological lesion profile and pattern of PrPres deposition that matched those observed in mice challenged with BASE brain. These findings indicate that, in Tgbov XV mice, muscle and brain tissues maintain the same biological properties of the BASE strain.



Although serial transmission studies in Tgbov XV mice showed that the BASE prion is capable to replicate in the spleen converting, in part, into a BSE-like strain (personal observation), we did not detect infectivity in lymph node and spleen from cattle with experimental and natural BASE. This observation opposes the possibility that the BASE agent might re-circulate, potentially as BSE-like strain, in different hosts. Kidney is an edible organ and infectivity found in urine is kidney-associated [30]. Lack of transmission from kidney of natural and experimental BASE is an important issue, since infectivity in kidney has been demonstrated by bioassay in human prion diseases [31], and PrPSc has been observed in kidney of scrapie infected sheep and CWD affected deer [32]–[34].



The present data offer novel information on the tropism of the BASE agent and highlight relevant public health issues. While the transmission barrier for classical BSE is high in most species, BASE prions are readily transmissible to a variety of mammals including non-human primates [11]–[13], [35]. Accordingly, the possibility of spreading of BASE prions through skeletal muscle to other species should be taken into account and evaluated in risk analysis studies.







Saturday, June 25, 2011


Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus Macaque


"BSE-L in North America may have existed for decades"











PLEASE NOTE *

Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

snip...

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...









P.4.23

Transmission of atypical BSE in humanized mouse models

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time.*** The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg mice. The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.









P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN HUMANIZED MOUSE MODELS

Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University, Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous address: USDA National Animal Disease Center, Ames, IA 50010, USA

Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have been discovered in three continents since 2004. The first case of naturally occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006 in the USA. The transmissibility and phenotypes of these atypical BSE strains/isolates in humans were unknown. We have inoculated humanized transgenic mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M isolate. We have found that the atypical BSE-L strain is much more virulent than the classical BSE-C.*** The atypical BSE-H strain is also transmissible in the humanized transgenic mice with distinct phenotype, but no transmission has been observed for the BSE-M isolate so far.

III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE, DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)


http://www.istitutoveneto.it/prion_09/Abstracts_09.pdf



I ask Professor Kong ;

Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease (CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk Assessment

''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE, or less virulent than cBSE? just curious.....''

Professor Kong reply ;

.....snip

''As to the H-BSE, we do not have sufficient data to say one way or another, but we have found that H-BSE can infect humans. I hope we could publish these data once the study is complete. Thanks for your interest.''

Best regards,

Qingzhong Kong, PhD Associate Professor Department of Pathology Case Western Reserve University Cleveland, OH 44106 USA

END...TSS

Thursday, December 04, 2008 2:37 PM

"we have found that H-BSE can infect humans."

personal communication with Professor Kong. ...TSS

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf http://transmissiblespongiformencephalopathy.blogspot.com/2011/06/experimental-h-type-bovine-spongiform.html






Monday, October 10, 2011


EFSA Journal 2011 The European Response to BSE: A Success Story


snip...


EFSA and the European Centre for Disease Prevention and Control (ECDC) recently delivered a scientific opinion on any possible epidemiological or molecular association between TSEs in animals and humans (EFSA Panel on Biological Hazards (BIOHAZ) and ECDC, 2011). This opinion confirmed Classical BSE prions as the only TSE agents demonstrated to be zoonotic so far but the possibility that a small proportion of human cases so far classified as "sporadic" CJD are of zoonotic origin could not be excluded. Moreover, transmission experiments to non-human primates suggest that some TSE agents in addition to Classical BSE prions in cattle (namely L-type Atypical BSE, Classical BSE in sheep, transmissible mink encephalopathy (TME) and chronic wasting disease (CWD) agents) might have zoonotic potential.


snip...









see follow-up here about North America BSE Mad Cow TSE prion risk factors, and the ever emerging strains of Transmissible Spongiform Encephalopathy in many species here in the USA, including humans ;








PLoS One. 2012; 7(2): e31449.

Published online 2012 February 21. doi: 10.1371/journal.pone.0031449

PMCID: PMC3283643

Infectivity in Skeletal Muscle of Cattle with Atypical Bovine Spongiform Encephalopathy

The present data offer novel information on the tropism of the BASE agent and highlight relevant public health issues. While the transmission barrier for classical BSE is high in most species, BASE prions are readily transmissible to a variety of mammals including non-human primates [11]–[13], [35]. Accordingly, the possibility of spreading of BASE prions through skeletal muscle to other species should be taken into account and evaluated in risk analysis studies.


http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3283643/?tool=pubmed


Nature. 1972 Mar 10;236(5341):73-4.

Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).

Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0

Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)

C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland

SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
http://www.nature.com/nature/journal/v236/n5341/abs/236073a0.html


Wednesday, February 16, 2011

IN CONFIDENCE

SCRAPIE TRANSMISSION TO CHIMPANZEES

IN CONFIDENCE
http://scrapie-usa.blogspot.com/2011/02/in-confidence-scrapie-transmission-to.html



AUGUST 4, 1997 PARTIAL AND VOLUNTARY MAD COW FEED BAN WAS NOTHING MORE THAN INK ON PAPER.



ONE DECADE, POST PARTIAL AND VOLUNTARY MAD COW FEED BAN.


10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

Date: March 21, 2007 at 2:27 pm PST

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II

___________________________________

PRODUCT

Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried, Recall # V-024-2007

CODE

Cattle feed delivered between 01/12/2007 and 01/26/2007

RECALLING FIRM/MANUFACTURER

Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.

Firm initiated recall is ongoing.

REASON

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

42,090 lbs.

DISTRIBUTION

WI

___________________________________

PRODUCT

Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot- Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal, JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral, BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall # V-025-2007

CODE

The firm does not utilize a code - only shipping documentation with commodity and weights identified.

RECALLING FIRM/MANUFACTURER

Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm initiated recall is complete.

REASON

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

VOLUME OF PRODUCT IN COMMERCE

9,997,976 lbs.

DISTRIBUTION

ID and NV

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
http://www.fda.gov/Safety/Recalls/EnforcementReports/2007/ucm120446.htm



Saturday, August 14, 2010

BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY


*** (see mad cow feed in COMMERCE IN ALABAMA...TSS)


BANNED MAD COW FEED IN COMMERCE IN ALABAMA

Date: September 6, 2006 at 7:58 am PST PRODUCT

a) EVSRC Custom dairy feed, Recall # V-130-6;

b) Performance Chick Starter, Recall # V-131-6;

c) Performance Quail Grower, Recall # V-132-6;

d) Performance Pheasant Finisher, Recall # V-133-6.

CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter dated July 19, 2006. Firm initiated recall is complete.

REASON

Dairy and poultry feeds were possibly contaminated with ruminant based protein.

VOLUME OF PRODUCT IN COMMERCE 477.72 tons

DISTRIBUTION AL

______________________________
http://www.fda.gov/bbs/topics/enforce/2006/ENF00968.html


PRODUCT Bulk custom dairy pre-mixes,

Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc., Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete. REASON Possible contamination of dairy animal feeds with ruminant derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 350 tons

DISTRIBUTION AL and MS

______________________________

PRODUCT

a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb. bags, Recall # V-121-6;

b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags, Recall # V-122-6;

c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall # V-123-6;

d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50 lb bags, Recall # V-124-6;

e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall # V-125-6;

f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall # V-126-6;

g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall # V-127-6

CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by telephone and visit on June 20, 2006, and by letter on June 23, 2006. Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall is ongoing.

REASON Poultry and fish feeds which were possibly contaminated with ruminant based protein were not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags

DISTRIBUTION AL, GA, MS, and TN

END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006

###
http://www.fda.gov/bbs/topics/ENFORCE/2006/ENF00964.html


Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125 TONS Products manufactured from 02/01/2005 until 06/06/2006

Date: August 6, 2006 at 6:16 pm PST PRODUCT

a) CO-OP 32% Sinking Catfish, Recall # V-100-6;

b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall # V-101-6;

c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;

d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;

e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;

f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50 lb. bag, Recall # V-105-6;

g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%, Recall # V-106-6;

h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to 20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall # V-107-6;

i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall # 108-6;

j) CO-OP LAYING CRUMBLES, Recall # V-109-6;

k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall # V-110-6;

l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;

m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE

Product manufactured from 02/01/2005 until 06/06/2006

RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL, by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is complete.

REASON Animal and fish feeds which were possibly contaminated with ruminant based protein not labeled as "Do not feed to ruminants".

VOLUME OF PRODUCT IN COMMERCE 125 tons

DISTRIBUTION AL and FL

END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006

###
http://www.fda.gov/bbs/topics/enforce/2006/ENF00963.html


MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006 09:22 71.248.128.67

RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II

______________________________

PRODUCT

a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals, Recall # V-079-6;

b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg), Recall # V-080-6;

c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED, Recall # V-081-6;

d) Feather Meal, Recall # V-082-6 CODE

a) Bulk

b) None

c) Bulk

d) Bulk

RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL, by telephone on June 15, 2006 and by press release on June 16, 2006. Firm initiated recall is ongoing.

REASON

Possible contamination of animal feeds with ruminent derived meat and bone meal.

VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons

DISTRIBUTION Nationwide

END OF ENFORCEMENT REPORT FOR July 12, 2006

###
http://www.fda.gov/bbs/topics/enforce/2006/ENF00960.html



please see full text ;http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html


Research Project: Study of Atypical Bse

Location: Virus and Prion Diseases of Livestock

Project Number: 3625-32000-073-07
Project Type: Specific C/A


Start Date: Sep 15, 2004
End Date: Sep 14, 2007


Objective:
The objective of this cooperative research project with Dr. Maria Caramelli from the Italian BSE Reference Laboratory in Turin, Italy, is to conduct comparative studies with the U.S. bovine spongiform encephalopathy (BSE) isolate and the atypical BSE isolates identified in Italy. The studies will cover the following areas: 1. Evaluation of present diagnostics tools used in the U.S. for the detection of atypical BSE cases. 2. Molecular comparison of the U.S. BSE isolate and other typical BSE isolates with atypical BSE cases. 3. Studies on transmissibility and tissue distribution of atypical BSE isolates in cattle and other species.

Approach:
This project will be done as a Specific Cooperative Agreement with the Italian BSE Reference Laboratory, Istituto Zooprofilattico Sperimentale del Piemonte, in Turin, Italy. It is essential for the U.S. BSE surveillance program to analyze the effectiveness of the U.S diagnostic tools for detection of atypical cases of BSE. Molecular comparisons of the U.S. BSE isolate with atypical BSE isolates will provide further characterization of the U.S. BSE isolate. Transmission studies are already underway using brain homogenates from atypical BSE cases into mice, cattle and sheep. It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.











3:00 Afternoon Refreshment Break, Poster and Exhibit Viewing in the Exhibit
Hall


3:30 Transmission of the Italian Atypical BSE (BASE) in Humanized Mouse

Models Qingzhong Kong, Ph.D., Assistant Professor, Pathology, Case Western Reserve
University

Bovine Amyloid Spongiform Encephalopathy (BASE) is an atypical BSE strain
discovered recently in Italy, and similar or different atypical BSE cases
were also reported in other countries. The infectivity and phenotypes of
these atypical BSE strains in humans are unknown. In collaboration with
Pierluigi Gambetti, as well as Maria Caramelli and her co-workers, we have
inoculated transgenic mice expressing human prion protein with brain
homogenates from BASE or BSE infected cattle. Our data shows that about half
of the BASE-inoculated mice became infected with an average incubation time
of about 19 months; in contrast, none of the BSE-inoculated mice appear to
be infected after more than 2 years. ***These results indicate that BASE is
transmissible to humans and suggest that BASE is more virulent than
classical BSE in humans.

6:30 Close of Day One









Tuesday, March 2, 2010

Animal Proteins Prohibited in Ruminant Feed/Adulterated/Misbranded Rangen Inc 2/11/10 USA
http://madcowfeed.blogspot.com/2010/03/animal-proteins-prohibited-in-ruminant.html




Monday, March 1, 2010

ANIMAL PROTEIN I.E. MAD COW FEED IN COMMERCE A REVIEW 2010
http://madcowfeed.blogspot.com/2010/03/animal-protien-ie-mad-cow-feed-in.html




Tuesday, September 14, 2010

Feed Safety and BSE/Ruminant Feed Ban Support Project (U18)
http://madcowfeed.blogspot.com/2010/09/feed-safety-and-bseruminant-feed-ban.html




Friday, October 8, 2010

Scientific reasons for a feed ban of meat-and-bone meal, applicable to all farmed animals including cattle, pigs, poultry, farmed fish and pet food
http://madcowfeed.blogspot.com/2010/10/scientific-reasons-for-feed-ban-of-meat.html




P.9.21

Molecular characterization of BSE in Canada

Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada

Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.

Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis.

Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.

Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada.

*** It also suggests a similar cause or source for atypical BSE in these countries.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf



O.4.3

Spread of BSE prions in cynomolgus monkeys (Macaca fascicularis) after oral transmission

Edgar Holznagel1, Walter Schulz-Schaeffer2, Barbara Yutzy1, Gerhard Hunsmann3, Johannes Loewer1 1Paul-Ehrlich-Institut, Federal Institute for Sera and Vaccines, Germany; 2Department of Neuropathology, Georg-August University, Göttingen, Germany, 3Department of Virology and Immunology, German Primate Centre, Göttingen, Germany

Background: BSE-infected cynomolgus monkeys represent a relevant animal model to study the pathogenesis of variant Creutzfeldt-Jacob disease (vCJD).

Objectives: To study the spread of BSE prions during the asymptomatic phase of infection in a simian animal model.

Methods: Orally BSE-dosed macaques (n=10) were sacrificed at defined time points during the incubation period and 7 orally BSE-dosed macaques were sacrificed after the onset of clinical signs. Neuronal and non-neuronal tissues were tested for the presence of proteinase-K-resistant prion protein (PrPres) by western immunoblot and by paraffin-embedded tissue (PET) blot technique.

Results: In clinically diseased macaques (5 years p.i. + 6 mo.), PrPres deposits were widely spread in neuronal tissues (including the peripheral sympathetic and parasympathetic nervous system) and in lymphoid tissues including tonsils. In asymptomatic disease carriers, PrPres deposits could be detected in intestinal lymph nodes as early as 1 year p.i., but CNS tissues were negative until 3 – 4 years p.i. Lumbal/sacral segments of the spinal cord and medulla oblongata were PrPres positive as early as 4.1 years p.i., whereas sympathetic trunk and all thoracic/cervical segments of the spinal cord were still negative for PrPres. However, tonsil samples were negative in all asymptomatic cases.

Discussion: There is evidence for an early spread of BSE to the CNS via autonomic fibres of the splanchnic and vagus nerves indicating that trans-synaptical spread may be a time-limiting factor for neuroinvasion. Tonsils were predominantly negative during the main part of the incubation period indicating that epidemiological vCJD screening results based on the detection of PrPres in tonsil biopsies may mostly tend to underestimate the prevalence of vCJD among humans.


P.4.23

Transmission of atypical BSE in humanized mouse models

Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1 1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research Institute, Poland; 5Kansas State University (Previously at USDA National Animal Disease Center), USA

Background: Classical BSE is a world-wide prion disease in cattle, and the classical BSE strain (BSE-C) has led to over 200 cases of clinical human infection (variant CJD). Atypical BSE cases have been discovered in three continents since 2004; they include the L-type (also named BASE), the H-type, and the first reported case of naturally occurring BSE with mutated bovine PRNP (termed BSE-M). The public health risks posed by atypical BSE were largely undefined.

Objectives: To investigate these atypical BSE types in terms of their transmissibility and phenotypes in humanized mice. Methods: Transgenic mice expressing human PrP were inoculated with several classical (C-type) and atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation time, characteristics and distribution of PrPSc, symptoms, and histopathology were or will be examined and compared.

Results: Sixty percent of BASE-inoculated humanized mice became infected with minimal spongiosis and an average incubation time of 20-22 months, whereas only one of the C-type BSE-inoculated mice developed prion disease after more than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse brains was biochemically different from bovine BASE or sCJD. PrPSc was also detected in the spleen of 22% of BASE-infected humanized mice, but not in those infected with sCJD. Secondary transmission of BASE in the humanized mice led to a small reduction in incubation time. The atypical BSE-H strain is also transmissible with distinct phenotypes in the humanized mice, but no BSE-M transmission has been observed so far.

Discussion: Our results demonstrate that BASE is more virulent than classical BSE, has a lymphotropic phenotype, and displays a modest transmission barrier in our humanized mice.

BSE-H is also transmissible in our humanized Tg mice.

The possibility of more than two atypical BSE strains will be discussed.

Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
http://www.prion2009.com/sites/default/files/Prion2009_Book_of_Abstracts.pdf



P03.137

Transmission of BSE to Cynomolgus Macaque, a Non-human Primate; Development of Clinical Symptoms and Tissue Distribution of PrPSC

Yamakawa, Y1; Ono, F2; Tase, N3; Terao, K3; Tannno, J3; Wada, N4; Tobiume, M5; Sato, Y5; Okemoto-Nakamura, Y1; Hagiwara, K1; Sata, T5 1National Institure of Infectious diseases, Cell biology and Biochemistry, Japan; 2Corporation for Production and Research Laboratory Primates., Japan; 3National Institure of Biomedical Innovation, Tsukuba Primate Reserch Center, Japan; 4Yamauchi Univ., Veterinary Medicine, Japan; 5National Institure of Infectious diseases, Pathology, Japan

Two of three cynomolgus monkeys developed abnormal neuronal behavioral signs at 30-(#7) and 28-(#10) months after intracerebral inoculation of 200ul of 10% brain homogenates of BSE affected cattle (BSE/JP6). Around 30 months post inoculation (mpi), they developed sporadic anorexia and hyperekplexia with squeal against environmental stimulations such as light and sound. Tremor, myoclonic jerk and paralysis became conspicuous during 32 to 33-mpi, and symptoms become worsened according to the disease progression. Finally, one monkey (#7) fell into total paralysis at 36-mpi. This monkey was sacrificed at 10 days after intensive veterinary care including infusion and per oral supply of liquid food. The other monkey (#10) had to grasp the cage bars to keep an upright posture caused by the sever ataxia. This monkey was sacrificed at 35-mpi. EEG of both monkeys showed diffuse slowing. PSD characteristic for sporadic CJD was not observed in both monkeys. The result of forearm movement test showed the hypofunction that was observed at onset of clinical symptoms. Their cognitive function determined by finger maze test was maintained at the early stage of sideration. However, it was rapidly impaired followed by the disease progression. Their autopsied tissues were immunochemically investigated for the tissue distribution of PrPSc. Severe spongiform change in the brain together with heavy accumulation of PrPSc having the type 2B/4 glycoform profile confirmed successful transmission of BSE to Cynomolgus macaques. Granular and linear deposition of PrPSC was detected by IHC in the CNS of both monkeys. At cerebral cortex, PrPSC was prominently accumulated in the large plaques. Sparse accumulation of PrPSc was detected in several peripheral nerves of #7 but not in #10 monkey, upon the WB analysis. Neither #7 nor #10 monkey accumulated detectable amounts of PrPSc in their lymphatic organs such as tonsil, spleen, adrenal grands and thymus although PrPSc was barely detected in the submandibular lymph node of #7 monkey. Such confined tissue distribution of PrPSc after intracerebral infection with BSE agent is not compatible to that reported on the Cynomolgus macaques infected with BSE by oral or intra-venous (intra-peritoneal) routs, in which PrPSc was accumulated at not only CNS but also widely distributed lymphatic tissues.

P04.27

Experimental BSE Infection of Non-human Primates: Efficacy of the Oral Route

Holznagel, E1; Yutzy, B1; Deslys, J-P2; Lasmézas, C2; Pocchiari, M3; Ingrosso, L3; Bierke, P4; Schulz-Schaeffer, W5; Motzkus, D6; Hunsmann, G6; Löwer, J1 1Paul-Ehrlich-Institut, Germany; 2Commissariat à l´Energie Atomique, France; 3Instituto Superiore di Sanità, Italy; 4Swedish Institute for Infectious Disease control, Sweden; 5Georg August University, Germany; 6German Primate Center, Germany

Background: In 2001, a study was initiated in primates to assess the risk for humans to contract BSE through contaminated food. For this purpose, BSE brain was titrated in cynomolgus monkeys.

Aims: The primary objective is the determination of the minimal infectious dose (MID50) for oral exposure to BSE in a simian model, and, by in doing this, to assess the risk for humans. Secondly, we aimed at examining the course of the disease to identify possible biomarkers.

Methods: Groups with six monkeys each were orally dosed with lowering amounts of BSE brain: 16g, 5g, 0.5g, 0.05g, and 0.005g. In a second titration study, animals were intracerebrally (i.c.) dosed (50, 5, 0.5, 0.05, and 0.005 mg).

Results: In an ongoing study, a considerable number of high-dosed macaques already developed simian vCJD upon oral or intracerebral exposure or are at the onset of the clinical phase. However, there are differences in the clinical course between orally and intracerebrally infected animals that may influence the detection of biomarkers.

Conclusions: Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate. The difference in the incubation period between 5 g oral and 5 mg i.c. is only 1 year (5 years versus 4 years). However, there are rapid progressors among orally dosed monkeys that develop simian vCJD as fast as intracerebrally inoculated animals.

The work referenced was performed in partial fulfilment of the study “BSE in primates“ supported by the EU (QLK1-2002-01096).
http://www.neuroprion.org/resources/pdf_docs/conferences/prion2007/abstract_book.pdf



Simian vCJD can be easily triggered in cynomolgus monkeys on the oral route using less than 5 g BSE brain homogenate.http://www.prion2007.com/pdf/Prion%20Book%20of%20Abstracts.pdf



WE know now, and we knew decades ago, that 5.5 grams of suspect feed in TEXAS was enough to kill 100 cows.

look at the table and you'll see that as little as 1 mg (or 0.001 gm) caused 7% (1 of 14) of the cows to come down with BSE;

Risk of oral infection with bovine spongiform encephalopathy agent in primates

Corinne Ida Lasmézas, Emmanuel Comoy, Stephen Hawkins, Christian Herzog, Franck Mouthon, Timm Konold, Frédéric Auvré, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Nicole Salès, Gerald Wells, Paul Brown, Jean-Philippe Deslys Summary The uncertain extent of human exposure to bovine spongiform encephalopathy (BSE)--which can lead to variant Creutzfeldt-Jakob disease (vCJD)--is compounded by incomplete knowledge about the efficiency of oral infection and the magnitude of any bovine-to-human biological barrier to transmission. We therefore investigated oral transmission of BSE to non-human primates. We gave two macaques a 5 g oral dose of brain homogenate from a BSE-infected cow. One macaque developed vCJD-like neurological disease 60 months after exposure, whereas the other remained free of disease at 76 months. On the basis of these findings and data from other studies, we made a preliminary estimate of the food exposure risk for man, which provides additional assurance that existing public health measures can prevent transmission of BSE to man.

snip...

BSE bovine brain inoculum

100 g 10 g 5 g 1 g 100 mg 10 mg 1 mg 0·1 mg 0·01 mg

Primate (oral route)* 1/2 (50%)

Cattle (oral route)* 10/10 (100%) 7/9 (78%) 7/10 (70%) 3/15 (20%) 1/15 (7%) 1/15 (7%)

RIII mice (ic ip route)* 17/18 (94%) 15/17 (88%) 1/14 (7%)

PrPres biochemical detection

The comparison is made on the basis of calibration of the bovine inoculum used in our study with primates against a bovine brain inoculum with a similar PrPres concentration that was inoculated into mice and cattle.8 *Data are number of animals positive/number of animals surviving at the time of clinical onset of disease in the first positive animal (%). The accuracy of bioassays is generally judged to be about plus or minus 1 log. ic ip=intracerebral and intraperitoneal.

Table 1: Comparison of transmission rates in primates and cattle infected orally with similar BSE brain inocula

Published online January 27, 2005
http://www.thelancet.com/journal/journal.isa



It is clear that the designing scientists must also have shared Mr Bradley̢۪s surprise at the results because all the dose levels right down to 1 gram triggered infection.http://web.archive.org/web/20040523230128/www.bseinquiry.gov.uk/files/ws/s145d.pdf



it is clear that the designing scientists must have also shared Mr Bradleyâs surprise at the results because all the dose levels right down to 1 gram triggered infection.http://web.archive.org/web/20030526212610/http://www.bseinquiry.gov.uk/files/ws/s147f.pdf





Tuesday, November 02, 2010


BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html





Tuesday, July 14, 2009 U.S.


Emergency Bovine Spongiform Encephalopathy Response Plan Summary and BSE Red Book


Date: February 14, 2000 at 8:56 am PST


WHERE did we go wrong $$$







LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow. This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$ ALABAMA MAD COW g-h-BSEalabama In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.









Saturday, August 14, 2010


BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY (see mad cow feed in COMMERCE IN ALABAMA...TSS)






her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).


This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine-human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks. Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA NATURE|Vol 457|26 February 2009








SEE FULL TEXT OF ALL THIS HERE ;


2009 UPDATE ON ALABAMA AND TEXAS MAD COWS 2005 and 2006






Friday, December 23, 2011


Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate Model


Volume 18, Number 1—January 2012 Dispatch






P.9.21 Molecular characterization of BSE in Canada


Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre, Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of Calgary, Canada


Background: Three BSE types (classical and two atypical) have been identified on the basis of molecular characteristics of the misfolded protein associated with the disease. To date, each of these three types have been detected in Canadian cattle.


Objectives: This study was conducted to further characterize the 16 Canadian BSE cases based on the biochemical properties of there associated PrPres.


Methods: Immuno-reactivity, molecular weight, glycoform profiles and relative proteinase K sensitivity of the PrPres from each of the 16 confirmed Canadian BSE cases was determined using modified Western blot analysis. Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and changes in glycosylation similar to other atypical BSE cases. PK digestion under mild and stringent conditions revealed a reduced protease resistance of the atypical cases compared to the C-type cases. N terminal- specific antibodies bound to PrPres from H type but not from C or L type. The C-terminal-specific antibodies resulted in a shift in the glycoform profile and detected a fourth band in the Canadian H-type BSE.


Discussion: The C, L and H type BSE cases in Canada exhibit molecular characteristics similar to those described for classical and atypical BSE cases from Europe and Japan. This supports the theory that the importation of BSE contaminated feedstuff is the source of C-type BSE in Canada. *** It also suggests a similar cause or source for atypical BSE in these countries.






October 2009 O.11.3 Infectivity in skeletal muscle of BASE-infected cattle



Silvia Suardi1, Chiara Vimercati1, Fabio Moda1, Ruggerone Margherita1, Ilaria Campagnani1, Guerino Lombardi2, Daniela Gelmetti2, Martin H. Groschup3, Anne Buschmann3, Cristina Casalone4, Maria Caramelli4, Salvatore Monaco5, Gianluigi Zanusso5, Fabrizio Tagliavini1 1Carlo Besta" Neurological Institute,Italy; 2IZS Brescia, Italy; 33FLI Insel Riems, D, Germany; 4CEA-IZS Torino, Italy; 5University of Verona, Italy


Background: BASE is an atypical form of bovine spongiform encephalopathy caused by a prion strain distinct from that of BSE. Upon experimental transmission to cattle, BASE induces a previously unrecognized disease phenotype marked by mental dullness and progressive atrophy of hind limb musculature. Whether affected muscles contain infectivity is unknown. This is a critical issue since the BASE strain is readily transmissible to a variety of hosts including primates, suggesting that humans may be susceptible.


Objectives: To investigate the distribution of infectivity in peripheral tissues of cattle experimentally infected with BASE. Methods: Groups of Tg mice expressing bovine PrP (Tgbov XV, n= 7-15/group) were inoculated both i.c. and i.p. with 10% homogenates of a variety of tissues including brain, spleen, cervical lymph node, kidney and skeletal muscle (m. longissimus dorsi) from cattle intracerebrally infected with BASE. No PrPres was detectable in the peripheral tissues used for inoculation either by immunohistochemistry or Western blot.


Results: Mice inoculated with BASE-brain homogenates showed clinical signs of disease with incubation and survival times of 175±15 and 207±12 days. Five out of seven mice challenged with skeletal muscle developed a similar neurological disorder, with incubation and survival times of 380±11 and 410±12 days. At present (700 days after inoculation) mice challenged with the other peripheral tissues are still healthy. The neuropathological phenotype and PrPres type of the affected mice inoculated either with brain or muscle were indistinguishable and matched those of Tgbov XV mice infected with natural BASE.


Discussion: Our data indicate that the skeletal muscle of cattle experimentally infected with BASE contains significant amount of infectivity, at variance with BSE-affected cattle, raising the issue of intraspecies transmission and the potential risk for humans. Experiments are in progress to assess the presence of infectivity in skeletal muscles of natural BASE.







Saturday, July 23, 2011


CATTLE HEADS WITH TONSILS, BEEF TONGUES, SPINAL CORD, SPECIFIED RISK MATERIALS (SRM's) AND PRIONS, AKA MAD COW DISEASE




Saturday, November 6, 2010


TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the EU


Berne, 2010 TAFS INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a non-profit Swiss Foundation






Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject PRO/AH/EDR>


Prion disease update 2010 (11) PRION DISEASE UPDATE 2010 (11)






Sunday, February 5, 2012


February 2012 Update on Feed Enforcement Activities to Limit the Spread of BSE




Wednesday, March 7, 2012


Case-control study of cases of bovine spongiform encephalopathy born after July 31, 1996 (BARB cases) in Great Britain Veterinary Record doi:10.1136/vr.100097




Wednesday, March 7, 2012


The epidemiology of bovine spongiform encephalopathy in the Republic of Ireland before and after the reinforced feed ban






Thursday, February 23, 2012


EIGHT FORMER SECRETARIES OF AGRICULTURE SPEAKING AT USDA'S 2012 AGRICULTURE OUTLOOK FORUM INDUCTED INTO USA MAD COW HALL OF SHAME






Tuesday, February 14, 2012


White House budget proposes cuts to ag programs including TSE PRION disease aka mad cow type disease






Thursday, February 16, 2012


Bovine Spongiform Encephalopathy BSE


31 USA SENATORS ASK PRESIDENT OBAMA TO HELP SPREAD MAD COW DISEASE 2012






> > > Ackerman says downed cattle are 50 times more likely to have mad cow disease (also known as Bovine Spongiform Encephalopathy, or BSE) than ambulatory cattle that are suspected of having BSE. Of the 20 confirmed cases of mad cow disease in North America since 1993, at least 16 have involved downer cattle, he said. < < <


don’t forget the children...


PLEASE be aware, for 4 years, the USDA fed our children all across the Nation (including TEXAS) dead stock downer cows, the most high risk cattle for BSE aka mad cow disease and other dangerous pathogens.


who will watch our children for CJD for the next 5+ decades ???


WAS your child exposed to mad cow disease via the NSLP ???




SCHOOL LUNCH PROGRAM FROM DOWNER CATTLE UPDATE










DID YOUR CHILD CONSUME SOME OF THESE DEAD STOCK DOWNER COWS, THE MOST HIGH RISK FOR MAD COW DISEASE ???


you can check and see here ;








Saturday, March 5, 2011


MAD COW ATYPICAL CJD PRION TSE CASES WITH CLASSIFICATIONS PENDING ON THE RISE IN NORTH AMERICA






Sunday, February 12, 2012


National Prion Disease Pathology Surveillance Center Cases Examined1 (August 19, 2011) including Texas









Thursday, March 29, 2012





atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012

NIAA Annual Conference April 11-14, 2011San Antonio, Texas
http://nor-98.blogspot.com/2012/03/atypical-nor-98-scrapie-has-spread-from.html
DEEP THROAT TO TSS 2000-2001 (take these old snips of emails with how ever many grains of salt you wish. ...tss)
The most frightening thing I have read all day is the report of Gambetti's finding of a new strain of sporadic cjd in young people...Dear God, what in the name of all that is holy is that!!! If the US has different strains of scrapie.....why????than the UK...then would the same mechanisms that make different strains of scrapie here make different strains of BSE...if the patterns are different in sheep and mice for scrapie.....could not the BSE be different in the cattle, in the mink, in the humans.......I really think the slides or tissues and everything from these young people with the new strain of sporadic cjd should be put up to be analyzed by many, many experts in cjd........bse.....scrapie Scrape the damn slide and put it into mice.....wait.....chop up the mouse brain and and spinal cord........put into some more mice.....dammit amplify the thing and start the damned research.....This is NOT rocket science...we need to use what we know and get off our butts and move....the whining about how long everything takes.....well it takes a whole lot longer if you whine for a year and then start the research!!! Not sure where I read this but it was a recent press release or something like that: I thought I would fall out of my chair when I read about how there was no worry about infectivity from a histopath slide or tissues because they are preserved in formic acid, or formalin or formaldehyde.....for God's sake........ Ask any pathologist in the UK what the brain tissues in the formalin looks like after a year.......it is a big fat sponge...the agent continues to eat the brain ......you can't make slides anymore because the agent has never stopped........and the old slides that are stained with Hemolysin and Eosin......they get holier and holier and degenerate and continue...what you looked at 6 months ago is not there........Gambetti better be photographing every damned thing he is looking at.....
Okay, you need to know. You don't need to pass it on as nothing will come of it and there is not a damned thing anyone can do about it. Don't even hint at it as it will be denied and laughed at.......... USDA is gonna do as little as possible until there is actually a human case in the USA of the nvcjd........if you want to move this thing along and shake the earth....then we gotta get the victims families to make sure whoever is doing the autopsy is credible, trustworthy, and a saint with the courage of Joan of Arc........I am not kidding!!!! so, unless we get a human death from EXACTLY the same form with EXACTLY the same histopath lesions as seen in the UK nvcjd........forget any action........it is ALL gonna be sporadic!!!
And, if there is a case.......there is gonna be every effort to link it to international travel, international food, etc. etc. etc. etc. etc. They will go so far as to find out if a sex partner had ever traveled to the UK/europe, etc. etc. .... It is gonna be a long, lonely, dangerous twisted journey to the truth. They have all the cards, all the money, and are willing to threaten and carry out those threats....and this may be their biggest downfall...
Thanks as always for your help. (Recently had a very startling revelation from a rather senior person in government here..........knocked me out of my chair........you must keep pushing. If I was a power person....I would be demanding that there be a least a million bovine tested as soon as possible and agressively seeking this disease. The big players are coming out of the woodwork as there is money to be made!!! In short: "FIRE AT WILL"!!! for the very dumb....who's "will"! "Will be the burden to bare if there is any coverup!"
again it was said years ago and it should be taken seriously....BSE will NEVER be found in the US! As for the BSE conference call...I think you did a great service to freedom of information and making some people feign integrity...I find it scary to see that most of the "experts" are employed by the federal government or are supported on the "teat" of federal funds. A scary picture! I hope there is a confidential panel organized by the new government to really investigate this thing.
You need to watch your back........but keep picking at them.......like a buzzard to the bone...you just may get to the truth!!! (You probably have more support than you know. Too many people are afraid to show you or let anyone else know. I have heard a few things myself... you ask the questions that everyone else is too afraid to ask.)
END...TSS
IN CONFIDENCE
Perceptions of unconventional slow virus in the USA
GAH WELLS
Report of a visit to the U.S.A. April-May 1989
3. Prof. A Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed.
Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fantical incident to be avoided in the USA AT ALL COSTS.
and they meant it !


Terry S. Singeltary Sr. on the Creutzfeldt-Jakob Disease Public Health Crisis
















full text with source references ;










14th ICID International Scientific Exchange Brochure -





Final Abstract Number: ISE.114





Session: International Scientific Exchange





Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009





T. Singeltary





Bacliff, TX, USA





Background:





An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.





Methods:





12 years independent research of available data





Results:





I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.





Conclusion:





I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.












Tuesday, November 08, 2011



Can Mortality Data Provide Reliable Indicators for Creutzfeldt-Jakob Disease Surveillance? A Study in France from 2000 to 2008 Vol. 37, No. 3-4, 2011



Original Paper



Conclusions:These findings raise doubt about the possibility of a reliable CJD surveillance only based on mortality data.








Response to Public Comments on the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005


INTRODUCTION


The United States Department of Agriculture’s Food Safety and Inspection Service (FSIS) held a public meeting on July 25, 2006 in Washington, D.C. to present findings from the Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October 31, 2005 (report and model located on the FSIS website:





Comments on technical aspects of the risk assessment were then submitted to FSIS. Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, R-CALF USA, Linda A Detwiler, and Terry S. Singeltary.



This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind:







From: Terry S. Singeltary Sr. [flounder9@verizon.net]



Sent: Monday, July 24, 2006 1:09 PM



To: FSIS RegulationsComments



Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)



Page 1 of 98










Subject: Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products APHIS-2008-0010-0008 RIN:0579-AC68


Comment from Terry Singeltary

Document ID: APHIS-2008-0010-0008 Document Type: Public Submission

This is comment on Proposed Rule: Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products

Docket ID: APHIS-2008-0010 RIN:0579-AC68


Topics: No Topics associated with this document

View Document:

More


Document Subtype: Public Comment

Status: Posted

Received Date: March 22 2012, at 12:00 AM Eastern Daylight Time

Date Posted: March 22 2012, at 12:00 AM Eastern Daylight Time

Comment Start Date: March 16 2012, at 12:00 AM Eastern Daylight Time

Comment Due Date: May 15 2012, at 11:59 PM Eastern Daylight Time

Tracking Number: 80fdd617

First Name: Terry

Middle Name: S.

Last Name: Singeltary

City: Bacliff

Country: United States

State or Province: TX

Organization Name: CJD TSE PRION

Submitter's Representative: CONSUMERS




Comment:

comment submission Document ID APHIS-2008-0010-0001 Greetings USDA, OIE et al, what a difference it makes with science, from one day to the next. i.e. that mad cow gold card the USA once held. up until that fateful day in December of 2003, the science of BSE was NO IMPORTS TO USA FROM BSE COUNTRY. what a difference a day makes$ now that the shoe is on the other foot, the USDA via the OIE, wants to change science again, just for trade $ I implore the OIE decision and policy makers, for the sake of the world, to refuse any status quo of the USA BSE risk assessment. if at al, the USA BSE GBR should be raise to BSE GBR IV, for the following reasons. North America is awash with many different TSE Prion strains, in many different species, and they are mutating and spreading. IF the OIE, and whatever policy makers, do anything but raise the risk factor for BSE in North America, they I would regard that to be highly suspicious. IN fact, it would be criminal in my opinion, because the OIE knows this, and to knowingly expose the rest of the world to this dangerous pathogen, would be ‘knowingly’ and ‘willfully’, just for the almighty dollar, once again. I warned the OIE about all this, including the risk factors for CWD, and the fact that the zoonosis potential was great, way back in 2002. THE OIE in collaboration with the USDA, made the legal trading of the atypical Nor-98 Scrapie a legal global commodity. yes, thanks to the OIE and the USDA et al, it’s now legal to trade the atypical Nor-98 Scrapie strain all around the globe. IF you let them, they will do the same thing with atypical BSE and CWD (both strains to date). This with science showing that indeed these TSE prion strains are transmissible. I strenuously urge the OIE et al to refuse any weakening to the USA trade protocols for the BSE TSE prion disease (all strains), and urge them to reclassify the USA with BSE GBR IV risk factor. SEE REFERENCE SOURCES IN ATTACHMENTS


SEE Terry S. Singeltary Sr. Attachment WORD FILE ;










Sunday, March 11, 2012



APHIS Proposes New Bovine Spongiform Encephalopathy Import Regulations in Line with International Animal Health Standards Proposal Aims to Ensure Health of the U.S. Beef Herd, Assist in Negotiations








Wednesday, April 4, 2012






Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products APHIS-2008-0010-0008 RIN:0579-AC68








Monday, March 26, 2012

CANINE SPONGIFORM ENCEPHALOPATHY: A NEW FORM OF ANIMAL PRION DISEASE
http://caninespongiformencephalopathy.blogspot.com/2012/03/canine-spongiform-encephalopathy-new.html




Friday, April 20, 2012





Ultrastructural findings in pigs experimentally infected with bovine spongiform encephalopathy agent

http://madporcinedisease.blogspot.com/2012/04/ultrastructural-findings-in-pigs.html


Monday, December 21, 2009


Distinct Molecular Signature of Bovine Spongiform Encephalopathy Prion in Pigs








PORCINE SPONGIFORM ENCEPHALOPATHY PSE


7 OF 10 LITTLE PIGGIES WENT ON TO DEVELOP BSE;

1: J Comp Pathol. 2000 Feb-Apr; 122(2-3): 131-43. Related Articles,

Links

Click here to read

The neuropathology of experimental bovine spongiform encephalopathy in the pig.

Ryder SJ, Hawkins SA, Dawson M, Wells GA.

Veterinary Laboratories Agency Weybridge, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK.

In an experimental study of the transmissibility of BSE to the pig, seven of 10 pigs, infected at 1-2 weeks of age by multiple-route parenteral inoculation with a homogenate of bovine brain from natural BSE cases developed lesions typical of spongiform encephalopathy. The lesions consisted principally of severe neuropil vacuolation affecting most areas of the brain, but mainly the forebrain. In addition, some vacuolar change was identified in the rostral colliculi and hypothalamic areas of normal control pigs. PrP accumulations were detected immunocytochemically in the brains of BSE-infected animals. PrP accumulation was sparse in many areas and its density was not obviously related to the degree of vacuolation. The patterns of PrP immunolabelling in control pigs differed strikingly from those in the infected animals.

PMID: 10684682 [PubMed - indexed for MEDLINE]









IN CONFIENCE

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

1. CMO should be aware that a pig inoculated experimentally (ic, iv, and ip) with BSE brain suspension has after 15 months developed an illness, now confirmed as a spongiform encephalopathy. This is the first ever description of such a disease in a pig, although it seems there are no previous attempts at experimental inoculation with animal material. The Southwood group had thought pigs would not be susceptible. Most pigs are slaughtered when a few weeks old but there have been no reports of relevant neurological illness in breeding sows or other elderly pigs. ...see full text ;











IN CONFIDENCE

So it is plausible pigs could be pre-clinically affected with BSE but since so few are allowed to reach adulthood this has not been recognized through clinical disease. ...










CONFIDENTIAL

EXPERIMENTAL PORCINE SPONGIFORM ENCEPHALOPATHY

While this clearly is a cause for concern we should not jump to the conclusion that this means that pigs will necessarily be infected by bone and meat meal fed by the oral route as is the case with cattle. ...










CONFIDENTIAL



we cannot rule out the possibility that unrecognized subclinical spongiform encephalopathy could be present in British pigs though there is no evidence for this: only with parenteral/implantable pharmaceuticals/devices is the theoretical risk to humans of sufficient concern to consider any action.








May I, at the outset, reiterate that we should avoid dissemination of papers relating to this experimental finding to prevent premature release of the information. ...







CONFIDENTIAL



3. It is particularly important that this information is not passed outside the Department, until Ministers have decided how they wish it to be handled. ...








CONFIDENTIAL



But it would be easier for us if pharmaceuticals/devices are not directly mentioned at all. ...








CONFIDENTIAL




Our records show that while some use is made of porcine materials in medicinal products, the only products which would appear to be in a hypothetically ''higher risk'' area are the adrenocorticotrophic hormone for which the source material comes from outside the United Kingdom, namely America China Sweden France and Germany. The products are manufactured by Ferring and Armour. A further product, ''Zenoderm Corium implant'' manufactured by Ethicon, makes use of porcine skin - which is not considered to be a ''high risk'' tissue, but one of its uses is described in the data sheet as ''in dural replacement''. This product is sourced from the United Kingdom.....















FELINE SPONGIFORM ENCEPHALOPATHY FSE








EQUINE SPONGIFORM ENCEPHALOPATHY ESE









A CONTRIBUTION TO THE NEUROPATHOLOGY OF THE RED-NECKED OSTRICH (STRUTHIO CAMELUS) - SPONGIFORM ENCEPHALOPATHY







4.21 Three cases of SE’s with an unknown infectious agent have been reported in ostriches (Struthio Camellus) in two zoos in north west Germany (Schoon @ Brunckhorst, 1999, Verh ber Erkeg Zootiere 33:309-314). These birds showed protracted central nervous symptoms with ataxia, disturbances of balance and uncoordinated feeding behaviour. The diet of these birds had included poultry meat meal, some of which came from cattle emergency slaughter cases.







SE1806


TRANSMISSION STUDIES OF BSE TO DOMESTIC FOWL BY ORAL EXPOSURE TO BRAIN HOMOGENATE


1 challenged cock bird was necropsied (41 months p.i.) following a period of ataxia, tremor, limb abduction and other neurological signs. Histopathological examination failed to reveal any significant lesions of the central or peripheral nervous systems...


1 other challenged cock bird is also showing ataxia (43 months p.i.).


snip...



94/01.19/7.1








A notification of Spongiform Encephalopathy was introduced in October 1996 in respect of ungulates, poultry and any other animal.


4.23 MAFF have carried out their own transmission experiments with hens. In these experiments, some of the chickens exposed to the BSE agent showed neurological symptoms. However MAFF have not so far published details of the symptoms seen in chickens. Examination of brains from these chickens did not show the typical pathology seen in other SE’s. 4.24 A farmer in Kent in November 1996 noticed that one of his 20 free range hens, the oldest, aged about 30 months was having difficulty entering its den and appeared frightened and tended to lose its balance when excited. Having previously experienced BSE cattle on his farm, he took particular notice of the bird and continued to observe it over the following weeks. It lost weight, its balance deteriorated and characteristic tremors developed which were closely associated with the muscles required for standing. In its attempts to maintain its balance it would claw the ground more than usual and the ataxia progressively developed in the wings and legs, later taking a typical form of paralysis with a clumsy involuntary jerky motion. Violent tremors of the entire body, particularly the legs, became common, sparked off by the slightest provocation. This is similar to that seen in many BSE cases where any excitement may result in posterior ataxia, often with dropping of the pelvis, kicking and a general nervousness. Three other farmers and a bird breeder from the UK are known to have reported having hens with similar symptoms. The bird breeder who has been exhibiting his birds for show purposes for 20 years noticed birds having difficulty getting on to their perch and holding there for any length of time without falling. Even though the bird was eating normally, he noticed a weight loss of more than a pound in a bird the original weight of which was 5 pounds. 4.25 Histological examination of the brain revealed degenerative pathological changes in hens with a minimal vacuolation. The presence of PrP immunostaining of the brain sections revealed PrP-sc positive plaques and this must be regarded as very strong evidence to demonstrate that the hens had been incubating Spongiform Encephalopathy.








OPINION on : NECROPHAGOUS BIRDS AS POSSIBLE TRANSMITTERS OF TSE/BSE ADOPTED BY THE SCIENTIFIC STEERING COMMITTEE AT ITS MEETING OF 7-8 NOVEMBER 2002


OPINION


1. Necrophagous birds as possible transmitters of BSE. The SSC considers that the evaluation of necrophagous birds as possible transmitters of BSE, should theoretically be approached from a broader perspective of mammals and birds which prey on, or are carrion eaters (scavengers) of mammalian species. Thus, carnivorous and omnivorous mammals, birds of prey (vultures, falcons, eagles, hawks etc.), carrion eating birds (crows, magpies etc.) in general could be considered possible vectors of transmission and/or spread of TSE infectivity in the environment. In view also of the occurrence of Chronic Wasting Disease (CWD) in various deer species it should not be accepted that domestic cattle and sheep are necessarily the only source of TSE agent exposure for carnivorous species. While some information is available on the susceptibility of wild/exotic/zoo animals to natural or experimental infection with certain TSE agents, nothing is known of the possibility of occurrence of TSE in wild animal populations, other than among the species of deer affected by CWD in the USA.


1 The carrion birds are animals whose diet regularly or occasionally includes the consumption of carcasses, including possibly TSE infected ruminant carcasses.


C:\WINNT\Profiles\bredagi.000\Desktop\Necrophagous_OPINION_0209_FINAL.doc







Tuesday, April 24, 2012



MAD COW DISEASE USA 4TH CASE DOCUMENTED ATYPICAL BSE CALIFORNIA






Wednesday, April 25, 2012







TSS

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.