Friday, October 13, 2023

Deer Antler Extract Market Research Reports Cover Future, Past and Present Trends, what about CWD TSE Prion, what if?

Deer Antler Extract Market Research Reports Cover Future, Past and Present Trends, what about CWD TSE Prion, what if?


THE MEADE COUNTY MESSENGER

US World Regional News

Open menu Technology Politics Business Entertainment Health Sports

Deer Antler Extract Market Research Reports Cover Future, Past and Present Trends | Ltd., Antler Farms, Xi’an Sgonek Biological Technology Co., Ltd.

Statsndata Deer Antler Extract Market research reports provide all the information. It fuels market growth by providing customers with reliable data that helps them make critical decisions. These documents encapsulate extensive studies and analyses conducted by experts in various fields, presenting findings and insights that are crucial for both businesses and individuals seeking to navigate the complexities of the Deer Antler Extract market.

Get a sample report:https://www.statsndata.org/download-sample.php?id=63813

Provides an overview including market, definition, applications and developments, and manufacturing technology. This Deer Antler Extract market research report tracks all the recent developments and innovations in the market. It provides data on the obstacles encountered when starting a business and provides guidance for overcoming future challenges and obstacles.

Some of the major companies influencing this Deer Antler Extract market include:

• Shaanxi Yuantai Biological Technology Co., Ltd.

• Antler Farms

• Xi’an Sgonek Biological Technology Co., Ltd.

• Nutronics Labs

• Naturalin Bio-Resources Co.,Ltd

• Xi’an Sost Biotech Co.,Ltd

• Herbal Nutrition

• Royal Elk Products

• Mountain Red

• Bio Lab Naturals

This Deer Antler Extract research report highlights the major market players that are thriving in the market. Track business strategy, financial status and upcoming products.

First, this Deer Antler Extract research report provides an overview of the market, covering definitions, applications, product launches, developments, challenges, and geographies. The market is expected to see a solid development thanks to the stimulation of consumption in various markets. 

An analysis of the current market design and other fundamentals is provided in the Deer Antler Extract report.

The regional scope of the Deer Antler Extract market is mostly mentioned in the region-focused report.

• North America

• South America

• Asia Pacific

• Middle East and Africa

• Europe

Market Segmentation Analysis

The Deer Antler Extract market is segmented on the basis of type, product, end user, etc. Segmentation helps provide an accurate description of the market.

Market Segmentation: By Type

• Pharma & Healthcare, Food & Feed Additives, Others

Market Segmentation: By Application

• Below 95%, Above 95%

Customization Requests: https://www. statsndata.org/request-customization.php?id=63813

Purpose of this report:

Qualitative and quantitative trends, dynamics and forecast analysis of the Deer Antler Extract market from 2023 to 2029.

Use analytical tools such as SWOT analysis and Porter’s Five Competitive Skills analysis to describe the abilities of Deer Antler Extract buyers and suppliers to make profit-driven decisions and build their business.

An in-depth analysis of market segmentation helps identify existing market opportunities.

After all, this Deer Antler Extract report helps you save time and money by providing unbiased information in one place.

Segmentation Specification Historic Study on Deer Antler Extract 2019 – 2022 Future Forecast Deer Antler Extract 2023 – 2029 Company Accounted Shaanxi Yuantai Biological Technology Co., Ltd. • Antler Farms • Xi’an Sgonek Biological Technology Co., Ltd. • Nutronics Labs • Naturalin Bio-Resources Co.,Ltd • Xi’an Sost Biotech Co.,Ltd • Herbal Nutrition • Royal Elk Products • Mountain Red • Bio Lab Naturals Types Pharma & Healthcare, Food & Feed Additives, Others Application Below 95%, Above 95%

Conclusion

Deer Antler Extract Market attractiveness assessments have been published in publications regarding the competitive potential that new entrants and new products might offer to existing entrants. This research report also mentions the innovations, new developments, marketing strategies, branded technologies and products of key players in the global industry. An in-depth analysis of the competitive landscape using value chain analysis to provide a clear vision of the market. Future opportunities and threats for major Deer Antler Extract market players are highlighted in the post.

 Table Of Content

Chapter 1 Deer Antler Extract Market Overview

1.1 Product Overview and Scope of Deer Antler Extract

1.2 Deer Antler Extract Market Segmentation by Type

1.3 Deer Antler Extract Market Segmentation by Application

1.4 Deer Antler Extract Market Segmentation by Regions

1.5 Global Market Size (Value) of Deer Antler Extract (2018-2029)

Chapter 2 Global Economic Impact on Deer Antler Extract Industry

2.1 Global Macroeconomic Environment Analysis

2.2 Global Macroeconomic Environment Analysis by Regions

Chapter 3 Global Deer Antler Extract Market Competition by Manufacturers

3.1 Global Deer Antler Extract Production and Share by Manufacturers (2023 and 2023)

3.2 Global Deer Antler Extract Revenue and Share by Manufacturers (2023 and 2023)

3.3 Global Deer Antler Extract Average Price by Manufacturers (2023 and 2023)

3.4 Manufacturers Deer Antler Extract Manufacturing Base Distribution, Production Area and Product Type

3.5 Deer Antler Extract Market Competitive Situation and Trends
 
Chapter 4 Global Deer Antler Extract Production, Revenue (Value) by Region (2018-2023)

4.1 Global Deer Antler Extract Production by Region (2018-2023)

4.2 Global Deer Antler Extract Production Market Share by Region (2018-2023)

4.3 Global Deer Antler Extract Revenue (Value) and Market Share by Region (2018-2023)

4.4 Global Deer Antler Extract Production, Revenue, Price and Gross Margin (2018-2023)

Continue…


Contact Us

sales@statsndata.org

https://www.statsndata.org

Published 11 October 2023

By Jeson


Deer Antler Extract Market Research Reports Cover Future, Past and Present Trends, what about CWD TSE Prion, what if?

i am very concerned with the potential transmission of chronic wasting disease cwd tse prion of cervid (if it already hasn't happened, just not diagnosed), and the continued use of deer antler velvet in nutritional supplements or spray for humans. with the recent and old science that shows the zoonotic transmission of cwd to humans can transmit to humans, and with the recent science out that warns us of this, i think any use of deer antler velvet in nutritional supplements for humans, without testing the source cervid antler velvet for cwd, should be banned, you are playing with fire, with this TSE Prion disease and it's long incubation, all cervid must be tested for cwd before any use for humans or animals...

please see;

Volume 15, Number 5—May 2009

Research

Chronic Wasting Disease Prions in Elk Antler Velvet

Rachel C. Angers1, Tanya S. Seward, Dana Napier, Michael Green, Edward Hoover, Terry Spraker, Katherine O’Rourke, Aru Balachandran, and Glenn C. Telling

Author affiliations: University of Kentucky Medical Center, Lexington, Kentucky, USA (R.C. Angers, T.S. Seward, D. Napier, M. Green, G.C. Telling); Colorado State University, Fort Collins, Colorado, USA (E. Hoover, T. Spraker); US Department of Agriculture, Pullman, Washington, USA (K. O’Rourke); Canadian Food Inspection Agency, Ottawa, Ontario, Canada (A. Balachandran); 1Current affiliation: Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.

Abstract

Chronic wasting disease (CWD) is a contagious, fatal prion disease of deer and elk that continues to emerge in new locations. To explore the means by which prions are transmitted with high efficiency among cervids, we examined prion infectivity in the apical skin layer covering the growing antler (antler velvet) by using CWD-susceptible transgenic mice and protein misfolding cyclic amplification. Our finding of prions in antler velvet of CWD-affected elk suggests that this tissue may play a role in disease transmission among cervids. Humans who consume antler velvet as a nutritional supplement are at risk for exposure to prions. The fact that CWD prion incubation times in transgenic mice expressing elk prion protein are consistently more rapid raises the possibility that residue 226, the sole primary structural difference between deer and elk prion protein, may be a major determinant of CWD pathogenesis.

snip...

Implications for Horizontal CWD Transmission and Human Exposure Our studies indicate that antler velvet represents a previously unrecognized source of CWD prions in the environment. Whereas oral transmission of rodent-adapted scrapie prions is known to be ≈5 orders of magnitude less efficient than transmission by intracerebral inoculation (14,15), the relative efficiency of oral CWD prion transmission is unknown. Multiple exposures to low levels of CWD prions in the environment (16,17), as well as increased infectivity when prions are bound to soil minerals (18), are factors that may influence transmission.

The appearance of variant Creutzfeldt-Jakob disease in humans exposed to bovine spongiform encephalopathy (BSE) (19,20) and the demonstration of CWD prions in muscle (3) placed the human species barrier to CWD prions at the forefront of public health concerns. Our studies indicate that antler velvet represents an additional source for human exposure to CWD prions. Widely used in traditional Asian medicine to treat a variety of ailments including impotence, arthritis, and high blood pressure, antler velvet can be readily purchased in caplet form and its usage has increased worldwide.

Fortunately, to date there is no epidemiologic evidence that rates of CJD in the CWD-endemic region (Colorado, USA) have increased (21,22). Also reassuring is the inefficient in vitro conversion of human PrP to protease-resistant PrP by CWD (23). Two studies have shown that CWD prions failed to induce disease in Tg mice expressing human PrP (24,25). However, the failure of BSE to be transmitted to Tg mice expressing human prion protein (HuPrP) was cited as early evidence of a BSE transmission barrier in humans (26); subsequent studies demonstrated a strong effect of the codon 129 polymorphism on transmissibility of BSE prions (27). To date, only mice expressing HuPrP with methionine at 129 have been challenged with CWD. In support of the argument that humans might be susceptible to CWD, intracerebral inoculation of squirrel monkeys produced disease after >30 months (28). Prion strain properties are also critical when considering the potential for interspecies transmission. The existence of multiple CWD strains has been suggested by several studies (4,25,29,30), but strain isolation and host range characterization have not been reported. Finally, it is worth considering that if CWD were to cross the species barrier into humans, this transmission source might not be recognized if the disease profile overlapped with one of the forms of sporadic CJD reported in North America.

Possible Role for Residue 226 in CWD Pathogenesis Previous studies that demonstrated more rapid CWD prion incubation times in Tg mice expressing elk PrP (24,29) than in Tg(CerPrP)1536+/– mice (4) raised the possibility that the single amino acid difference at residue 226 between elk and deer PrP (5) may influence CWD pathogenesis (29). However, when the transmission characteristics of CWD isolates were directly compared in Tg mice expressing differing levels of deer or elk PrP, Tamgüney et al. concluded that CWD incubation times were related solely to the level of PrP transgene expression (25). We compared CWD transmission in Tg(CerPrP-E226)5037+/– and Tg(CerPrP)1536+/– mice, which express PrP at levels ≈5-fold higher than PrP levels in wild type mouse brain (Figure 1A), and found that CWD transmission was consistently and substantially more rapid in Tg(CerPrP-E226)5037+/– mice. Our results appear compatible with more efficient CWD prion propagation by elk cellular prion protein (CerPrPC) containing E at residue 226 than by deer CerPrPC containing Q at this position. Consistent with this interpretation, despite 5-fold lower levels of transgene expression in Tg(CerPrP-E226)5029+/– mice than in Tg(CerPrP)1536+/– mice, mean incubation times of the D92 isolate were equivalent in these 2 lines (Table). Nonetheless, undetected differences in CerPrPC expression, for example in particular cell types, might result in more rapid disease and/or altered pathologic changes. The generation of transgenic mice expressing elk and deer coding sequences using gene replacement strategies would seem to be an excellent approach for resolving this issue.

The different responses to CWD in Tg mice also appear to recapitulate aspects of CWD pathogenesis in the natural hosts. Previous limited comparative transmission studies indicated that CWD developed ≈25% more rapidly in orally challenged elk than deer (31). Although plaques were not detected in brains of CWD-affected elk, florid plaques have been observed in the brains of diseased deer (32,33). Similar differences in pathologic changes were observed in Tg(CerPrP-E226)5037+/– and Tg(CerPrP)1536+/– mice (Figure 4). Structural analyses suggest that residue 226 is located within a region of PrPC proposed to interact with a factor (34), possibly equivalent to the postulated protein X (35). Although mutation of the equivalent residue from Q to lysine (K) in epitope-tagged mouse PrP had no effect on PrPSc formation in transfected chronically infected ScN2A cells, the effects of the Q-to-E substitution were not assessed (36).


TUESDAY, MAY 11, 2021

A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

Conclusion

We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.

Supplemental data including molecular tissue sample analysis and autopsy findings could yield further supporting evidence. Given this patient’s clinical resemblance to CBD and the known histological similarities of CBD with CJD, clinicians should consider both diseases in the differential diagnosis of patients with a similarly esoteric presentation. Regardless of the origin of this patient’s disease, it is clear that the potential for prion transmission from cervids to humans should be further investigated by the academic community with considerable urgency.


''We believe that our patient’s case of CJD is highly suspicious for cervid etiology given the circumstances of the case as well as the strong evidence of plausibility reported in published literature. This is the first known case of CJD in a patient who had consumed deer antler velvet. Despite the confirmed diagnosis of CJD, a causal relationship between the patient’s disease and his consumption of deer antler velvet cannot be definitively concluded.''


CREUTZFELDT JAKOB DISEASE: A Unique Presentation of Creutzfeldt-Jakob Disease in a Patient Consuming Deer Antler Velvet

i was warning England and the BSE Inquiry about just this, way back in 1998, and was ask to supply information to the BSE Inquiry. for anyone that might be interested, see;

Singeltary submission to the BSE Inquiry on CJD and Nutritional Supplements 1998

ABOUT that deer antler spray and CWD TSE PRION... I have been screaming this since my neighbors mom died from cjd, and she had been taking a supplement that contained bovine brain, bovine eyeball, and other SRMs specified risk materials, the most high risk for mad cow disease. just saying...

I made a submission to the BSE Inquiry long ago during the BSE Inquiry days, and they seemed pretty interested.

Sender: "Patricia Cantos"

To: "Terry S Singeltary Sr. (E-mail)"

Subject: Your submission to the Inquiry

Date: Fri, 3 Jul 1998 10:10:05 +0100 3 July 1998

Mr Terry S Singeltary Sr. E-Mail: Flounder at wt.net Ref: E2979

Dear Mr Singeltary, Thank you for your E-mail message of the 30th of June 1998 providing the Inquiry with your further comments. Thank you for offering to provide the Inquiry with any test results on the nutritional supplements your mother was taking before she died. As requested I am sending you our general Information Pack and a copy of the Chairman's letter. Please contact me if your system cannot read the attachments. Regarding your question, the Inquiry is looking into many aspects of the scientific evidence on BSE and nvCJD.

I would refer you to the transcripts of evidence we have already heard which are found on our internet site at ;

http://www.bse.org.uk.

Could you please provide the Inquiry with a copy of the press article you refer to in your e-mail? If not an approximate date for the article so that we can locate it? In the meantime, thank you for you comments. Please do not hesitate to contact me on... snip...end...tss

everyone I tell this too gets it screwed up...MY MOTHER WAS NOT TAKING THOSE SUPPLEMENTS IPLEX (that I ever knew of). this was my neighbors mother that died exactly one year previously and to the day of sporadic CJD that was diagnosed as Alzheimer’s at first. my mother died exactly a year later from the Heidenhain Variant of Creutzfeldt Jakob Disease hvCJD, and exceedingly rare strains of the ever growing sporadic CJD’s. both cases confirmed. ...

kind regards, terry

TSEs i.e. mad cow disease's BSE/BASE and NUTRITIONAL SUPPLEMENTS IPLEX, mad by standard process; vacuum dried bovine BRAIN, bone meal, bovine EYE, veal Bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. also; what about potential mad cow candy bars ? see their potential mad cow candy bar list too... THESE are just a few of MANY of just this ONE COMPANY...TSS

''So, in sum, dietary supplements sold in the United States often contain ruminant tissues from undisclosed sources. Personally, I am rather squeamish and I don't think I would be eating prostate or testicle or pituitary, but I am also a little bit wary of consuming products with those glands, not just out of personal repugnance but simply out of a health concern.'' 

DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR BIOLOGICS EVALUATION AND RESEARCH TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ADVISORY COMMITTEE Friday, January 19, 2001

snip...

15 Open Public Hearing

16 DR. FREAS: We are opening the open public hearing

17 now. We have received one response to speak in this

18 afternoon's open public hearing. That is from Dr. Scott

19 Norton. If Dr. Norton is here, would you please come

20 forward. You can either use the podium or the microphone,

21 whichever is your choice.

22 DR. NORTON: I am Scott Norton and I am a

23 physician in the Washington D.C. area. I am here speaking

24 as a private citizen today.

25 I first became concerned about the presence of 231

1 tissues from ruminant animals in dietary supplements about

2 six months ago and expressed my concern in a letter that was 3 published in New England Journal of Medicine in July of Year 4 2000. 5 A couple of the products that I had looked at, and 6 examined their labels, that raised these concerns I brought 7 in right here. I will just read some of the organs that are 8 found in one that is called Male Power. Deer antler, 9 pancreas, orchic--despite what we just heard that the FDA

10 prefers the term "testicular tissue" to be written on the

11 labels, I have never seen a dietary supplement say

12 "testicle." They always say "orchis" or "orchic" which may

13 sound rather flowery to the etymologically impaired--thymus,

14 adrenal, heart, lymph node, prostate, spleen and pituitary.

15 There are actually seventeen organs in that particular

16 product.

17 There is another product that is called Brain

18 Nutrition that tells us that it is vitamins and minerals

19 essential for important brain function. It does not mention

20 that there is any glandulars on at least the bold print. 21 But if you look at the small print on the back, we learn

22 that it has brain extract and pituitary extract, raw, in

23 there.

24 We know that many of the organs that can be found

25 in the dietary supplements do fall in that list of organs

232

1 that are suspect for contamination with TSEs, the labels, in 2 nearly all cases, identify neither the animal source nor the 3 geographic location from which the organs were derived. I 4 have seen one line that did specify from New Zealand cattle 5 but no other manufacturer will list either the species or 6 the geographic location. 7 The FDA's and the USDA's import alerts that we 8 just learned about prohibit the use of these organs in 9 foods, medicines and medical devices. But my reading of the

10 alert, 17-04, suggests that DSHEA does allow some loopholes

11 for these tissues to possible slip in.

12 I will just read from 17-04 that we heard. On the

13 first page, it says that, "This alert does not establish any

14 obligations on regulated entities." I love seeing

15 legislation that starts out with that caveat.

16 Then it says, further, "The USDA regulations do

17 not apply to bovine-derived materials intended for human

18 consumption as finished dietary supplements." We also learn

19 that the prohibition, or the import alert, is limited to

20 bulk lots of these tissues, completed tissues, from BSE-

21 derived countries. It does not mention if it is not a bulk

22 import or if it is raw materials rather than finished

23 materials.

24 Further, we know that it is strongly recommended

25 but not actually prohibited in the language here. So I have

233

1 not taken the assurances from that import alert that Dr. 2 Moore was trying to convey to us. 3 So, in sum, dietary supplements sold in the United 4 States often contain ruminant tissues from undisclosed 5 sources. Personally, I am rather squeamish and I don't 6 think I would be eating prostate or testicle or pituitary, 7 but I am also a little bit wary of consuming products with 8 those glands, not just out of personal repugnance but simply 9 out of a health concern.

10 So my question to the advisory committee is this;

11 is my caution reasonable and, if it is, should we take

12 further efforts to inform, or even protect, the American

13 public from such exposure.

14 I was curious about Dr. Moore's remarks. I sensed

15 two messages. One was the initial reassurance that FDA has

16 the regulatory authority but then I also learned that it is

17 the manufacturer's responsibility to provide those 18 assurances, that the FDA doesn't actually inspect.

19 I think that the FDA commissioners from Harvey

20 Wylie to David Kessler would say that that track record has

21 proven itself.

22 Thank you very much.

23 [Applause.]

24 DR. BROWN: Thanks, Dr. Norton. 25 Committee Discussion snip...

17 But I think that we could exhibit some quite 18 reasonable concern about blood donors who are taking dietary 19 supplements that contain a certain amount of unspecified- 20 origin brain, brain-related, brain and pituitary material. 21 If they have done this for more than a sniff or something 22 like that, then, perhaps, they should be deferred as blood 23 donors. 24 That is probably worse than spending six months in 25 the U.K. 1/19/01 3681t2.rtf(845) page 501 http://www.fda.gov/ohrms/dockets/ac/cber01.htm

Advisory Committees: CBER 2001 Meeting Documents

see actual paper;


http://web.archive.org/web/20030830045538/http://www.fda.gov/ohrms/dockets/ac/01/slides/3681s2_07.pdf


Given the science and the information presented, and given the comprehensive array of Natraflex quality control and chain-of-custody procedures, we believe that you can be confident, the our velvet-antler supplements are safe.



Date: Sun, 12 Jan 2003 12:56:44 -0600

Sender: Bovine Spongiform Encephalopathy

From: "Terry S. Singeltary Sr."

Subject: Re: USA ruminant-to-ruminant feed ban warning letters ??? 

With these known facts about nutritional supplements, I think it imperative to include this potential route and source of TSE and warning in this article. Why was it not included? I lost my mother to hvCJD DOD 12/14/97, and I probably will not live long enough to know the route and source of her TSE. Exactly one year previously, to the day 12/14/96, my neighbor also lost his mother to sporadic CJD. Both of these cases were confirmed. but my neighbor's mother had been taking a nutritional supplement called IPLEX, made by Standard Process Co. Here is a listing of potentially TSE-tainted tissues: vacuum dried bovine BRAIN, bone meal, bovine EYE, veal bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. The CDC came and took the pills, a few years later, I spoke with the late Dr. Gibbs and NIH/CDC and he told me that those particular pills did not show any infectivity with the testing techniques to date, but he also told me - 

1. That the testing techniques at that time may not be sufficient to pick up any 'low-level' infectivity. 
(so, if accumulation plays into this, this could play a big part). 

2. She had been taking these type pills for years, could have been another batch. 

There have been other people die of CJD that were taking these type nutritional supplements. So, my point being, I believe this to warrant a potential risk factor, one not to be ignored, especially in the USA where there are many known TSEs, and where there are many unknowns due to the lack of sufficient TSE testing in USA cattle, and especially since the new findings of Collinge et al, where BSE transmission to the 129-methionine genotype can lead to an alternate phenotype which is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. 

I believe these findings to be of substantial importance: 

DEPARTMENT OF HEALTH AND HUMAN SERVICES FOOD AND DRUG ADMINISTRATION CENTER FOR BIOLOGICS EVALUATION AND RESEARCH TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHIES ADVISORY COMMITTEE 

Friday, January 19, 2001 

Holiday Inn Bethesda Versailles I and II 8120 Wisconsin Avenue Bethesda, Maryland 2 PARTICIPANTS Paul W. Brown, M.D., Chairperson William Freas, Ph.D., Executive Secretary VOTING MEMBERS Ermias D. Belay, M.D. David C. Bolton, Ph.D. Donald S. Burke, M.D. Dean O. Cliver, Ph.D. Bruce M. Ewenstein, M.D., Ph.D. Peter G. Lurie, M.D. Pedro Piccardo, M.D. Stanley B. Prusiner, M.D. Raymond P. Roos, M.D. Elizabeth S. Williams, D.V.M., Ph.D. VOTING CONSULTANTS Linda A. Detwiler, D.V.M. David Gaylor, Ph.D. Paul R. McCurdy, M.D. Kenrad E. Nelson, M.D. NONVOTING CONSULTANT Susan Leitman, M.D. GUESTS Richard Davey, M.D. Louis Katz, M.D. 

snip... page 501 253 

1 DR. BOLTON: I have an additional question about 2 that. What is the assurance that additional locally sourced 3 tracheas are not added into that manufacturing process, thus 4 boosting the yield, if you will, but being returned to the 5 U.S. as being produced from U.S.-sourced raw material? 6 DR. McCURDY: Are there data to indicate how many 7 grams, or whatever, of infected brain are likely to infect 8 an organism, either animal or man, when taken orally? 9 DR. BROWN: If I am not mistaken, and I can be 10 corrected, I think a half a gram is enough in a cow, orally; 11 in other words, one good dietary-supplement pill. 12 DR. McCURDY: What I am driving at is the question 13 we are asked is really not do we wish to regulate these 14 things coming in. I think the statements about difficulties 15 in regulating things in the future or near future for new 16 regulations were probably accurate. 17 But I think that we could exhibit some quite 18 reasonable concern about blood donors who are taking dietary 19 supplements that contain a certain amount of unspecified- 20 origin brain, brain-related, brain and pituitary material. 21 If they have done this for more than a sniff or something 22 like that, then, perhaps, they should be deferred as blood 23 donors. 24 That is probably worse than spending six months in 25 the U.K. 1/19/01 3681t2.rtf(845) page 501 http://www.fda.gov/ohrms/dockets/ac/cber01.htm There has been a Nutritional Supplement mad cow warning letter circulating around since about 1990. Every year they issue the same letter to the manufactures asking them to please be sure they source their products from BSE-FREE countries. but we all know, the statement BSE-FREE, is a joke, especially in the USA. I sat in on the 50 state emergency BSE conference call, (uninvited guest) and I know for a fact the so-called 'pharmaceutical grade' bovine source herds, bovines that were to never be fed ruminant materials, the USA cannot for certain say that indeed these cattle have never ingested ruminant feed, in fact, some probably had. 

Subject: BSE--U.S. 50 STATE CONFERENCE CALL Jan. 9, 2001 

Date: Tue, 9 Jan 2001 16:49:00 -0800 

From: "Terry S. Singeltary Sr." < flounder@wt.net > 

Reply-To: Bovine Spongiform Encephalopathy < BSE-L@uni-karlsruhe.de > 

To: BSE-L@uni-karlsruhe.de Bovine Spongiform Encephalopathy < BSE-L@UNI-KARLSRUHE.DE > 

Greetings List Members, I was lucky enough to sit in on this BSE conference call today and even managed to ask a question. that is when the trouble started. I submitted a version of my notes to Sandra Blakeslee of the New York Times, whom seemed very upset, and rightly so. "They tell me it is a closed meeting and they will release whatever information they deem fit. Rather infuriating." And I would have been doing just fine, until I asked my question. I was surprised my time to ask a question came so quickly. (understand, these are taken from my notes for now. the spelling of names and such could be off.) 

[host Richard Barns] And now a question from Terry S. Singeltary of CJD Watch. 

[TSS] Yes, Thank You. U.S. cattle - what kind of guarantee can you give for serum or tissue donor herds? [no answer, you could hear in the background, mumbling and "We can't. Have him ask the question again."] 

[host Richard] Could you repeat the question? 

[TSS] U.S. cattle..what kind of guarantee can you give for serum or tissue donor herds? [not sure whom ask this] What group are you with? 

[TSS] CJD Watch, my Mom died from hvCJD and we are tracking CJD world-wide. 

[not sure who is speaking] Could you please disconnect Mr. Singeltary 

[TSS] You are not going to answer my question? 

[not sure whom speaking] NO 

From this point, I was still connected, got to listen and tape the whole conference. at one point someone came on, a woman, and ask again; [unknown woman] What group are you with? 

[TSS] CJD Watch and my Mom died from hvCJD We are trying to tract down CJD and other human TSE's world wide. I was invited to sit in on this from someone inside the USDA/APHIS and that is why I am here. Do you intend on banning me from this conference now? 

At this point the conference was turned back up, and I got to finish listening. They never answered or even addressed my one question, or even addressed the issue. BUT, I will try and give you a run-down for now, of the conference. IF i were another Country, I would take heed to my notes, BUT PLEASE do not depend on them. ask for transcript from: RBARNS@ORA.FDA.GOV 301-827-6906 He would be glad to give you one ;-) Rockville Maryland, Richard Barns Host 


MAD COW DISEASE:

ARE OUR PRECAUTIONS ADEQUATE?

 WEDNESDAY, APRIL 4, 2001

U.S. Senate, Subcommittee on Consumer Affairs, Foreign Commerce and Tourism, Committee on Commerce, Science, and Transportation, Washington, DC.



BSE issues in the U.S., How they were labelling ruminant feed? Revising issues. 

now to explore more on this issue of TSEs and Nutritional Supplements. please read further; Suit Filed Over Mad Cow Disclaimer

By Jason Hoppin The Recorder

March 23, 2001 

A small San Francisco litigation firm has teamed up with Milberg, Weiss, Bershad, Hynes & Lerach to sue a health supplements manufacturer, alleging the company misrepresents the danger of acquiring mad cow disease through its products. 

The suit, filed under California's unfair business practices statute, alleges that Wisconsin's Standard Process Inc. uses, in part, crackpot science to allay customers' fears about the transmission of bovine spongiform encephalopathy, also known as mad cow disease. 

"Standard Process either knowingly or recklessly has omitted a material fact by failing to inform consumers that the overwhelming majority of reputable scientists and physicians have concluded that mad-cow disease is transmitted to humans by prions in bovine meat and/or bovine organs," Bushnell, Caplan & Fielding's Alan Caplan wrote. 

The complaint points to a statement by the company about the safety of its products which suggests that pesticides may be to blame for mad cow outbreaks, not the consumption of meat. "It's probably loosely referred to as research," deadpanned Jan Novakofski, a University of Illinois researcher who studies the disease. "The evidence for that kind of concept [versus the consumption theory] is about an ounce to a pound." No cases of mad cow have ever been reported in the United States, and the plaintiff in the case, James Gorman, does not suffer from the disease. 

Instead, he is seeking damages for misrepresentation, fraud, unfair advertising and unfair business practices. 

The case was filed in San Francisco Superior Court. The product, a vitamin supplement called Iplex 5100, is sold through licensed health professionals, including acupuncturists, nutritionists and the like. Iplex 5100 is made in part, with cow parts: eyes, kidneys, livers, bones and brains, where BSE is most highly concentrated. 

Standard Process did not return a phone call seeking comment, but the company's Web site says it purchases bovine products only from U.S. government-inspected facilities. "Standard Process has never used any glandular substances or bovine tissue derivatives from animals in any BSE-infected country," the company states. 

The human manifestation of BSE -- variant Creutzfeld-Jakob disease -- has killed more than 80 people in Great Britain, and new outbreaks have recently been reported in several European countries. 

U.S. officials have worried that dietary supplements may provide an entry point for the disease, which has been detected here in animals other than cows. "The health food industry is totally unregulated," Novakofski said. "You go to the health food store and no one's ever tested anything." However, Standard Process says its Wisconsin production facility is regulated by the U.S. Food and Drug Administration, and that its cow products are certified by the government.

 © 2001 law.com Inc. © 1999-2001 NLP IP Company, 

============================================ 



[ Q: ] What is a dietary supplement and how is it regulated? 

[ A: ] A dietary supplement is any product taken by mouth that contains a so-called "dietary ingredient" and its label clearly states that it is a dietary supplement. The "dietary ingredients" in dietary supplements may include vitamins, minerals, herbs, and amino acids as well as substances such as enzymes, organ tissues, metabolites, extracts or concentrates. Dietary supplements can be found in many forms such as pills, tablets, capsules, liquids or powders. They must be identified on the label as a dietary supplement. How are Dietary Supplements regulated? The label of a dietary supplement must contain enough information about the composition of the product so that consumers can make informed choices. (The information must be presented in FDA-specified format.) The manufacturer must make sure the label information is truthful and not misleading. The manufacturer is also responsible for making sure that all the dietary ingredients in the supplements are safe. Manufactures and distributors do not need to register with FDA or get FDA approval before producing or selling dietary supplements. Are advertisements for Dietary Supplements regulated by FDA? No. The Federal Trade Commission (FTC) handles advertising for dietary supplements and most other products sold to consumers. FDA works closely with FTC in this area, but their work is directed by different laws.

============================================================ 

U. S. Food and Drug Administration Email this Page To a Friend [email a friend] Center for Food Safety and Applied Nutrition January 3, 2001 [ ] Overview of Dietary Supplements What is a dietary supplement? 

Congress defined the term "dietary supplement" in the Dietary Supplement Health and Education Act (DSHEA) of 1994. A dietary supplement is a product taken by mouth that contains a "dietary ingredient" intended to supplement the diet. The "dietary ingredients" in these products may include: vitamins, minerals, herbs or other botanicals, amino acids, and substances such as enzymes, organ tissues, glandulars, and metabolites. Dietary supplements can also be extracts or concentrates, and may be found in many forms such as tablets, capsules, softgels, gelcaps, liquids, or powders. They can also be in other forms, such as a bar, but if they are, information on their label must not represent the product as a conventional food or a sole item of a meal or diet. Whatever their form may be, DSHEA places dietary supplements in a special category under the general umbrella of "foods," not drugs, and requires that every supplement be labeled a dietary supplement. 

What is a "new dietary ingredient" in a dietary supplement? 

The Dietary Supplement Health and Education Act (DSHEA) of 1994 defined both of the terms "dietary ingredient" and "new dietary ingredient" as components of dietary supplements. In order for an ingredient of a dietary supplement to be a "dietary ingredient," it must be one or any combination of the following substances: * a vitamin, * a mineral, * an herb or other botanical, * an amino acid, * a dietary substance for use by man to supplement the diet by increasing the total dietary intake (e.g., enzymes or tissues from organs or glands), or * a concentrate, metabolite, constituent or extract. A "new dietary ingredient" is one that meets the above definition for a "dietary ingredient" and was not sold in the U.S. in a dietary supplement before October 15, 1994. What is FDA's role in regulating dietary supplements versus the manufacturer's responsibility for marketing them? In October 1994, the Dietary Supplement Health and Education Act (DSHEA) was signed into law by President Clinton. Before this time, dietary supplements were subject to the same regulatory requirements as were other foods. This new law, which amended the Federal Food, Drug, and Cosmetic Act, created a new regulatory framework for the safety and labeling of dietary supplements. Under DSHEA, a firm is responsible for determining that the dietary supplements it manufactures or distributes are safe and that any representations or claims made about them are substantiated by adequate evidence to show that they are not false or misleading. This means that dietary supplements do not need approval from FDA before they are marketed. Except in the case of a new dietary ingredient, where pre-market review for safety data and other information is required by law, a firm does not have to provide FDA with the evidence it relies on to substantiate safety or effectiveness before or after it markets its products. Also, manufacturers do not need to register themselves nor their dietary supplement products with FDA before producing or selling them. Currently, there are no FDA regulations that are specific to dietary supplements that establish a minimum standard of practice for manufacturing dietary supplements. However, FDA intends to issue regulations on good manufacturing practices that will focus on practices that ensure the identity, purity, quality, strength and composition of dietary supplements. At present, the manufacturer is responsible for establishing its own manufacturing practice guidelines to ensure that the dietary supplements it produces are safe and contain the ingredients listed on the label. 

When must a manufacturer or distributor notify FDA about a dietary supplement it intends to market in the U.S.? 

The Dietary Supplement Health and Education Act (DSHEA) requires that a manufacturer or distributor notify FDA if it intends to market a dietary supplement in the U.S. that contains a "new dietary ingredient." The manufacturer (and distributor) must demonstrate to FDA why the ingredient is reasonably expected to be safe for use in a dietary supplement, unless it has been recognized as a food substance and is present in the food supply. There is no authoritative list of dietary ingredients that were marketed before October 15, 1994. Therefore, manufacturers and distributors are responsible for determining if a dietary ingredient is "new", and if it is not, for documenting that the dietary supplements its sells, containing the dietary ingredient, were marketed before October 15, 1994. For more detailed information on new dietary ingredients, go to: http://www.cfsan.fda.gov/~dms/ds-ingrd.html. 


What information must the manufacturer disclose on the label of a dietary supplement? 

FDA regulations require that certain information appear on dietary supplement labels. Information that must be on a dietary supplement label includes: a descriptive name of the product stating that it is a "supplement;" the name and place of business of the manufacturer, packer, or distributor; a complete list of ingredients; and the net contents of the product. In addition, each dietary supplement (except for some small volume products or those produced by eligible small businesses) must have nutrition labeling in the form of a "Supplement Facts" panel. This label must identify each dietary ingredient contained in the product. Must all ingredients be declared on the label of a dietary supplement? Yes, ingredients not listed on the "Supplement Facts" panel must be listed in the "other ingredient" statement beneath the panel. The types of ingredients listed there could include the source of dietary ingredients, if not identified in the "Supplement Facts" panel (e.g., rose hips as the source of vitamin C), other food ingredients (e.g., water and sugar), and technical additives or processing aids (e.g., gelatin, starch, colors, stabilizers, preservatives, and flavors). 

For more details, see: http://www.cfsan.fda.gov/~lrd/fr97923a.html. 


Are dietary supplement serving sizes standardized or are there restrictions on the amount of a nutrient that can be in one serving? 

Other than the manufacturer's responsibility to ensure safety, there are no rules that limit a serving size or the amount of a nutrient in any form of dietary supplements. This decision is made by the manufacturer and does not require FDA review or approval. 

Where can I get information about a specific dietary supplement? 

Manufacturers and distributors do not need FDA approval to sell their dietary supplements. This means that FDA does not keep a list of manufacturers, distributors or the dietary supplement products they sell. If you want more detailed information than the label tells you about a specific product, you may contact the manufacturer of that brand directly. The name and address of the manufacturer or distributor can be found on the label of the dietary supplement. 

Who has the responsibility for ensuring that a dietary supplement is safe? 

By law (DSHEA), the manufacturer is responsible for ensuring that its dietary supplement products are safe before they are marketed. Unlike drug products that must be proven safe and effective for their intended use before marketing, there are no provisions in the law for FDA to "approve" dietary supplements for safety or effectiveness before they reach the consumer. Also unlike drug products, manufacturers and distributors of dietary supplements are not currently required by law to record, investigate or forward to FDA any reports they receive of injuries or illnesses that may be related to the use of their products. Under DSHEA, once the product is marketed, FDA has the responsibility for showing that a dietary supplement is "unsafe," before it can take action to restrict the product's use or removal from the marketplace. 

Do manufacturers or distributors of dietary supplements have to tell FDA or consumers what evidence they have about their product's safety or what evidence they have to back up the claims they are making for them? 

No, except for rules described above that govern "new dietary ingredients," there is no provision under any law or regulation that FDA enforces that requires a firm to disclose to FDA or consumers the information they have about the safety or purported benefits of their dietary supplement products. Likewise, there is no prohibition against them making this information available either to FDA or to their customers. It is up to each firm to set its own policy on disclosure of such information. For more information on claims that can be made for dietary supplements, see (http://www.cfsan.fda.gov/~dms/hclaims.html). 


How can consumers inform themselves about safety and other issues related to dietary supplements? 

It is important to be well informed about products before purchasing them. Because it is often difficult to know what information is reliable and what is questionable, consumers may first want to contact the manufacturer about the product they intend to purchase (see previous question "Where can I get information about a specific dietary supplement?"). 

In addition, to help consumers in their search to be better informed, FDA is providing the following sites: Tips For The Savvy Supplement User: Making Informed Decisions And Evaluating Information -- http://www.cfsan.fda.gov/~dms/ds-savvy.html (includes information on how to evaluate research findings and health information on-line) and Claims That Can Be Made for Conventional Foods and Dietary Supplements -- http://www.cfsan.fda.gov/~dms/hclaims.html, (provides information on what types of claims can be made for dietary supplements). 



What is FDA's oversight responsibility for dietary supplements? 

Because dietary supplements are under the "umbrella" of foods, FDA's Center for Food Safety and Applied Nutrition (CFSAN) is responsible for the agency's oversight of these products. FDA's efforts to monitor the marketplace for potential illegal products (that is, products that may be unsafe or make false or misleading claims) include obtaining information from inspections of dietary supplement manufacturers and distributors, the Internet, consumer and trade complaints, occasional laboratory analyses of selected products, and adverse events associated with the use of supplements that are reported to the agency. 

Does FDA routinely analyze the content of dietary supplements? 

In that FDA has limited resources to analyze the composition of food products, including dietary supplements, it focuses these resources first on public health emergencies and products that may have caused injury or illness. Enforcement priorities then go to products thought to be unsafe or fraudulent or in violation of the law. The remaining funds are used for routine monitoring of products pulled from store shelves or collected during inspections of manufacturing firms. The agency does not analyze dietary supplements before they are sold to consumers. The manufacturer is responsible for ensuring that the "Supplement Facts" label and ingredient list are accurate, that the dietary ingredients are safe, and that the content matches the amount declared on the label. 

FDA does not have resources to analyze dietary supplements sent to the agency by consumers who want to know their content. 

Instead, consumers may contact the manufacturer or a commercial laboratory for an analysis of the content. 

Is it legal to market a dietary supplement product as a treatment or cure for a specific disease or condition? 

No, a product sold as a dietary supplement and promoted on its label or in labeling* as a treatment, prevention or cure for a specific disease or condition would be considered an unapproved--and thus illegal--drug. To maintain the product's status as a dietary supplement, the label and labeling must be consistent with the provisions in the Dietary Supplement Health and Education Act (DSHEA) of 1994. *Labeling refers to the label as well as accompanying material that is used by a manufacturer to promote and market a specific product. 

Who validates claims and what kinds of claims can be made on dietary supplement labels? 

FDA receives many consumer inquiries about the validity of claims for dietary supplements, including product labels, advertisements, media, and printed materials. The responsibility for ensuring the validity of these claims rests with the manufacturer, FDA, and, in the case of advertising, with the Federal Trade Commission. By law, manufacturers may make three types of claims for their dietary supplement products: health claims, structure/function claims, and nutrient content claims. 

Some of these claims describe: the link between a food substance and disease or a health-related condition; the intended benefits of using the product; or the amount of a nutrient or dietary substance in a product. Different requirements generally apply to each type of claim, and are described in more detail at the following site: (http://www.cfsan.fda.gov/~dms/hclaims.html). 


Why do some supplements have wording (a disclaimer) that says: 

"This statement has not been evaluated by the FDA. This product is not intended to diagnose, treat, cure, or prevent any disease"? 

This statement or "disclaimer" is required by law (DSHEA) when a manufacturer makes a structure/function claim on a dietary supplement label. In general, these claims describe the role of a nutrient or dietary ingredient intended to affect the structure or function of the body. The manufacturer is responsible for ensuring the accuracy and truthfulness of these claims; they are not approved by FDA. For this reason, the law says that if a dietary supplement label includes such a claim, it must state in a "disclaimer" that FDA has not evaluated this claim. The disclaimer must also state that this product is not intended to "diagnose, treat, cure or prevent any disease," because only a drug can legally make such a claim. 

How are advertisements for dietary supplements regulated? 

The Federal Trade Commission (FTC) regulates advertising, including infomercials, for dietary supplements and most other products sold to consumers. FDA works closely with FTC in this area, but FTC's work is directed by different laws. For more information on FTC, go to: http://www.ftc.gov/bcp/menu-health.htm . Advertising and promotional material received in the mail are also regulated under different laws and are subject to regulation by the U.S. Postal Inspection Service. 

How do I, my health care provider, or any informed individual report a problem or illness caused by a dietary supplement to FDA? 

If you think you have suffered a serious harmful effect or illness from a product FDA regulates, including dietary supplements, the first thing you should do is contact or see your healthcare provider immediately. Then, you and your health care provider are encouraged to report this problem to FDA. Your health care provider can call FDA's MedWatch hotline at 1-800-FDA-1088, submit a report by fax to 1-800-FDA-0178 or on-line at:

 http://www.fda.gov/medwatch/report/hcp.htm. 


The MedWatch program provides a way for health care providers to report problems believed to be caused by FDA-regulated products such as drugs, medical devices, medical foods and dietary supplements. You, or anyone, may report a serious adverse event or illness directly to FDA if you believe it is related to the use of any of the above-mentioned products, by calling FDA at 1-800-FDA-1088, by fax at 1-800-FDA-0178 or reporting on-line at: http://www.fda.gov/medwatch/report/consumer/consumer.htm . FDA would like to know when you think a product caused you a serious problem, even if you are not sure that the product was the cause, or even if you do not visit a doctor or clinic. In addition to communicating with FDA on-line or by phone, you may use the postage-paid MedWatch form available from the FDA Web site. NOTE: The identity of the reporter and/or patient is kept confidential. For a general, not serious, complaint or concern about food products, including dietary supplements, you may contact the consumer complaint coordinator at the local FDA District Office nearest you. See the following Web address for the telephone number:

 http://www.fda.gov/opacom/backgrounders/complain.html. 

For more recent information on Dietary Supplements See http://www.cfsan.fda.gov/~dms/supplmnt.html http://vm.cfsan.fda.gov/~dms/ds-oview.html 

FDA Talk Papers are prepared by the Press Office to guide FDA personnel in responding with consistency and accuracy to questions from the public on subjects of current interest. Talk Papers are subject to change as more information becomes available. 

T01-09 

Print Media: 202-205-4144

February 5, 2001 

Broadcast Media: 301-827-3434

Consumer Inquiries: 888-INFO-FDA

FDA ISSUES LETTER TO INDUSTRY ON FOODS CONTAINING BOTANICAL AND OTHER NOVEL INGREDIENTS 

The Food and Drug Administration (FDA) recently issued a letter to the food industry restating the requirements of the Federal Food, Drug, and Cosmetic Act regarding the marketing of conventional foods containing novel ingredients, including botanicals. 

FDA is issuing this letter because of the significant growth in the marketing of foods containing these ingredients. 

FDA is concerned that some botanical and other novel ingredients that are being added to conventional foods are neither approved food additives, nor generally recognized as being safe for these uses. 

This letter serves as a reminder to the industry of the longstanding legal requirements governing conventional food products. 

In issuing this letter, FDA is also reminding manufacturers about the legal requirements regarding claims on conventional foods. 

The Food Drug and Cosmetic Act allows for certain claims such as: 

* health claims -- a claim characterizing the relationship between a food substance and a disease or health related condition; 

* nutrient content claims -- a claim characterizing the level of a nutrient in a food; and 

* structure/function claims -- a claim characterizing the effect of a food on the structure or function of the body. 

FDA must review health claims and nutrient content claims prior to marketing, unless the claim has been authorized by regulation or by statute under the authoritative statement notification procedure. Manufacturers are encouraged to contact the agency regarding the regulatory status of ingredients and claims they intend to use for foods. 

http://www.fda.gov/bbs/topics/ANSWERS/2001/ANS01070.html 


more listings of potential TSE carrying nutritional supplements, only a few of hundreds out there; 

IPLEX; (listing only potentially TSE tainted tissues) vacuum dried bovine BRAIN, bone meal, bovine EYE, veal bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. 

also this is another; Immuplex Ingredients; Bovine Liver PMG Extract, zinc-iron-copper liver chelate, bovine liver powder, veal bone PMG Extract, ascorbic acid, nutritional yeast, bovine spleen PMG Extract, high selenium yeast, vaccum dried bovine and ovine spleen, bovine thymus PMG Extract, bovine thymus Cytosol Extract, mixed tocopherois, high chromium yeast, pyridoxal 5-phosphate, vitamin A esters, calcium lactate, folic asid and cyanocabalamin. 

Two capsules supple 165 mg Bovine Liver PMG Extract, 45 mg Bovine spleen PMG Extract, 40 mg Vacuum Dried Bovine and Ovine Spleen, 35 mg. Bovine Thymus PMG Extract and 35 mg Bovine Thymus Cytosol Extract. METABOLIFE; Bovine Complex; Glandular system; Ovaries, Prostate, Scrotum and Adrenal

 (usda cattle) [big deal...tss] 

12,500 cattle ever checked for a TSE in the U.S.A. in the 12 year program (to aug. 2001) in that 12 years, the U.S. has raised 1.5 BILLION head of cattle including calf crop. 100 million in the USA in any given year. 37 MILLION slaughtered annually 190,000 DOWNERS annually

 ========================================= 

Subject: Metabolife Date: Mon, 7, Dec 1998 14:21:35 -0800 
From: Rand Smith < rsmith@metabolife.com > 
To: "' flounder@wt.net '" < flounder@wt.net > 

Dear Sir, We are looking at reformulation. I agree that slow virus diseases present a problem in some areas of the world. Our product uses healthy USDA inspected cattle for the glandular extract. If you have any links to more information on this subject I would like to examine them. Thank you for your interest and concern. Dr. Smith 

============================ 

here is the famous yearly token letter from FDA to supplements manufacturer; 

Letter to Manufacturers of Biological Products - Recommendations Regarding Bovine Spongiform Encephalopathy (BSE) 

Department of Health and Human Services Public Health Service Food and Drug Administration 1401 Rockville Pike Rockville, MD 20852-1448 April 19, 2000 

To Manufacturers of Biological Products 

The Food and Drug Administration (FDA) has issued letters (date May 3, 1991, December 17, 1993, and May 9, 1996) and a guidance document (September 1997) requesting that materials derived from ruminants which have resided in or originated from countries where Bovine Spongiform Encephalopathy (BSE) has been diagnosed not be used in the manufacture of FDA-regulated products intended for administration to humans. 

The United States Department of Agriculture (USDA) also issued an interim rule on January 6, 1998, restricting the importation of ruminants, meat and meat products from ruminants, and certain ruminant products and byproducts from all countries of Europe. 

Because of the serious nature of this issue, the Center for Biologics Evaluation and Research (CBER) believes it critical to update the current recommendations. 

CBER strongly recommends that manufacturers take whatever steps are necessary to assure that materials derived from all species of ruminant animals born, raised or slaughtered in countries where BSE is known to exist, or countries where the USDA has been unable to assure FDA that BSE does not exist, are not used in the manufacture of FDA-regulated products intended for administration to humans. 

The Agency has previously recommended that manufacturers take the following steps to prevent this occurrence: 

1.Identify all ruminant-derived materials (e.g., culture medium, transferrin, albumin, enzymes, lipids) used in the manufacture of regulated products. FDA considers the manufacture of biological products to include the preparation of master (including the original cell line) and working cell banks, as well as materials used in fermentation, harvesting, purification and formulation of the products. 

2.Document the country of origin and all countries where the live animal source has resided for each ruminant-derived material used in the manufacture of the regulated product. The regulated-product manufacturer should obtain this information from the supplier of the ruminant-derived product. The regulated-product manufacturer should also obtain the appropriate veterinary regulatory inspection certification of slaughter, as required by the country of origin of live animals, from the supplier. Documentation should be maintained for any new or in-process lots of licensed, cleared or approved products; products pending clearance or approval; and investigational products intended to be administered to humans. 

3.Maintain traceable records for each lot of ruminant material and each lot of FDA-regulated product manufactured using these materials. These records should be part of the product batch records and available for FDA inspection. Such records should be maintained for products manufactured at foreign as well as domestic facilities. It is the responsibility of the manufacturer to obtain up-to-date information regarding countries where BSE is known to exist, or countries where the USDA has been unable to assure FDA that BSE does not exist. 

This information is available from the USDA's Animal and Plant Health Inspection Service (APHIS) at telephone number 301-734-8364, website address http://www.aphis.usda.gov/ncie, and codified at 9 CFR 94.18 (see attached). Specific product-related questions should be directed to the appropriate application division within CBER's product offices. The phone numbers are: Dr. David Asher, Office of Blood Research and Review 301-827-3524

Dr. Paul Richman, Office of Vaccines Research and Review 301-827-3070

James Crim, Office of Therapeutics Research and Review 301-827-5101 Thank you for your attention to this matter. Sincerely, ---- signature --- Kathryn C. Zoon, Ph.D. Director Center for Biologics Evaluation And Research Attachment 

http://www.fda.gov/cber/ltr/bse041900.htm 


1992 copy of token TSE nutritional supplement letter to manufacturers; 

Nov. 9, 1992 Dear Manufacturer of Dietary Supplements:

In a series of recent meetings, representatives of the DIETARY SUPPLEMENT INDUSTRY have suggested that if FDA has CONCERNS INVOLVING DIETARY SUPPLEMENT PRODUCTS, it should communicate its CONCERNS DIRECTLY TO THE INDUSTRY. We agree that this is a reasonable and appropriate suggestion. Therefore, I wish to bring a matter of some IMPORTANCE to FDA to your attention. I would like to share with you FDA's CONCERNS regarding the marketing of certain NUTRITIONAL SUPPLEMENTS. We have become aware that some supplements contain BRAIN, NERVOUS TISSUE, OR GLANDULAR MATERIALS FROM A VARIETY OF ANIMAL SPECIES, INCLUDING BOVINE (OXEN, BEEF) AND OVINE (SHEEP) SPECIES. We are CONCERNED that some amount of these materials MAY HAVE COME FROM COUNTRIES EXPERIENCING BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN THE CASE! OF BOVINE TISSUES, OR SCRAPIE IN THE CASE OF OVINE TISSUES...

As you may know, BSE is an infectious neurologic disorder of cattle, and is prevalent in certain parts of the world. Scrapie is a spongiform encephalopathy of sheep, and is a disease that is endemic in many parts of the world, INCLUDING the United States. It is believed that the rapid spread of BSE among animals in Great Britain was causes by inadequately rendered, scrapie agent-containing material being fed to cattle. Thus, it is suggested that BSE is the clinical manifestation of scrapie in cattle. It is further suggested that cattle became infected by the OROGASTRIC ROUTE. Both scrapie and BSE are classified as transmissible spongiform encephalopathies. The causal agent is unknown, but suspected to be an agent known variously as "prion", "virino, "unconventional virus", or "slow virus". That these agents can infect across species, and infect primates, has been demonstrated REPEATEDLY IN LABORATORY STUDIES...

Although cases are rare, spongiform encephalopathies can affect humans, most notably, CREUTZFELDT-JAKOB DISEASE (CJD). CJD is a rare disease, its incidence being about 1 case per million population. It is 100% FATAL. Human-to-Human transmission by iatrogenic means (e.g., contaminated neurosurgical instruments, corneal and dura mater implants, human growth hormone injections) has been documented. The possibility of transmission of animal spongiform encephalopathy agents to humans from consumption of animal brains from a variety of species, such as squirrel, goat, sheep, and hogs, and from consumption of sheep's eyeballs has been examined in the past. Although proof of such dietary transmission is lacking, some SUSPICIONS REMAIN. The rarity of the disease, coupled with what is believed to be a long onset time (median - 13 years), make more precise epidemiological studies EXTREMELY DIFFICULT. Additionally, there may be a genetic or other susceptibility in some individuals...

FDA has recently been involved in investigating a CONSUMER COMPLAINT INVOLVING A CONFIRMED CASE OF CJD. It is standard procedure for FDA to follow-up on all consumer complaints involving death or serious injury. In the course of this investigation, FDA learned that the WOMAN HAD TAKEN A BOVINE TISSUE-CONTAINING DIETARY SUPPLEMENT. Although, at the present there is no basis to conclude that this supplement played any role in causing the disease, FDA and NIH have decided that it is PRUDENT to further investigate this matter. Therefore, both agencies have begun to conduct cooperative studies to determine whether NUTRITIONAL SUPPLEMENTS CONTAINING BRAIN, NERVOUS TISSUE OR GLANDULAR MATERIALS FROM BOVINE AND OVINE SPECIES MIGHT BE LINKED TO HUMAN SPONGIFORM ENCEPHALOPATHIES.

In 1991, the United States Department of Agriculture published a rule (9 CFR 95.4) which PROHIBITS IMPORTS of various tissues and organs from ruminants in countries where BSE exists. Similar prohibitions have been in place for scrapie for many years. The concern addressed by the rules was that BSE or Scrapie-containing materials may find their way into cattle or sheep in the U.S. Never-the-less, FDA feels that the principle embodied in the USDA rule is an appropriate standard for tissues, organs, glands, and processed extracts from these articles in-so-far as they may be used for human food, INCLUDING IN SUPPLEMENT FORM...

FDA is REQUESTING that you investigate the source of your neural and glandular tissue(s) or tissue extracts of bovine or ovine species to determine if they are being produced in known BSE countries or from flocks in which scrapie may be present. We would RECOMMEND that you reformulate your products using neural or glandular tissues that you are ASSURED are BSE or SCRAPIE free. We SUGGEST within the next two months, that you gather information and determine the source of bovine or ovine materials used in your product(s). If you use bovine-derived materials in your products(s), we SUGGEST that you develop a plan to assure, WITH A HIGH DEGREE OF CERTAINTY, that there is NO POSSIBILITY that materials of bovine origin are being supplied by BSE countries, either directly or indirectly. If you use ovine materials in your product(s), WE SUGGEST that you also develop a similar plan assuring that these tissues are from SCRAPIE-FREE animals. We fully recognize that there is no proven link between BSE or Scrapie, and human disease, but given the DEVASTATING CONSEQUENCES of human spongiform encephalopathies such as CJD, we believe that our REQUEST is a prudent step at this time...

FDA REQUESTS that you communicate your plan(s) to us once you have developed them. We recognize that the steps you take to secure the assurances you need from exporting countries MAY BE DIFFICULT, but we are certain you will agree with us that they are DESIRABLE...

If you need any additional information or guidance, please contact! Dr. Douglas L. Archer, Deputy Director, Center for Food Safety and Applied Nutrtion at 202-205-4057. We appreciate your cooperation and attention to this matter.

Sincerely, Fred R. Shank, Ph.D Director Center for Food Safety and Applied Nutrition

-------------------------------------------------- 

also, you can go to this FDA dockets page, and skroll down until you see EMC 597 'Terry S. Singeltary Sr.' highlighted in blue. this also has some very interesting information. It is a PDF file;

http://www.fda.gov/ohrms/dockets/dailys/00/mar00/030100/030100.htm 



another thing most disturbing, the USA imports supplements with SRMs from known BSE countries. and if you don't think scrapie or CWD can transmit to man as easily or as difficult as BSE (depends whom you have watched suffer and die from this horrible disease) well, i would like to see this proof of this (transmission studies only). but let us not forget the potential threat of BSE in sheep. another fine example; 

snip... 

In fact, the salesman now tells us he doesn't sell the machines anymore. But the quest for youth goes beyond facial creams and exotic contraptions, anti-agers are also ingesting some pretty wild-sounding dietary supplements. "Live proteins from sheep and pig from France, processed," says a representative. Life-Cell Technologies touts the benefits of supplements that contain processed pig and sheep organs. "I have a lot of body builders and professional athletes that use these products because they strengthen and stimulate the different glands and organs," says one woman. The idea, she implied, often is that ingesting ground up animal organs will strengthen human organs or even cure thyroid and adrenal diseases. "To my knowledge you can't just take pulverzied organs and feed them to somebody and think they're not going to have thyroid disease anymore or hypo-adrenalism," says Dr. Wexler. It would be kind of a medical miracle, wouldn't it? "It would be amazing, truly amazing," says Dr. Wexler. "Dateline" attended another anti-aging conference and expo in Chicago - this time with our cameras in plain view. Remember the exhibitor selling processed pig and sheep organs? We pressed her for scientific documentation. We asked, what is the science behind the idea? The woman tells us, "You would have to go on the Internet and get information, scientific studies." But this is her company, isn't it? "Yes it is," she says. "And if you don't mind, I don't want to be interviewed. I don't." "Dateline" tells her, "They are simple questions that any consumer would ask." Everywhere "Dateline" went at the anti-aging expo we heard a lot about so-called "scientific studies." "Well, it comes from 3,000 studies," a man at the expo tells us. At one booth the product is called transfer factor, and the active ingredient is colostrum - the potent pre-milk fluid in a lactating mother's breast. "We actually filtrate the transfer factor out of the colostrum," says one man. From where, mothers? "No," the man tells us. "From bovine colostrum, from cows."



Supplements Association Moves to Eliminate Bovine Parts From Products

WASHINGTON (Reuters Health) Mar 16 - The nation's largest dietary supplements industry group has issued new guidance to manufacturers amid concerns that some alternative health products containing bovine materials pose a risk of transmitting bovine spongiform encephalopathy (BSE) to humans.

The guidance, published by the National Nutritional Foods Association (NNFA), encourages manufacturers to eliminate all neurological bovine materials from their products. Consumption of brains and spinal cords from cows infected with BSE are widely believed to be the source of new variant Creutzfeldt-Jakob disease (vCJD) in humans........

snip... full text at;

http://id.medscape.com/

PLoS One. 2020; 15(8): e0237410.

Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410

PMCID: PMC7446902

PMID: 32817706

Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease

Nathaniel D. Denkers, Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Visualization, Writing – review & editing,#1 Clare E. Hoover, Conceptualization, Data curation, Investigation, Writing – original draft, Writing – review & editing,#2 Kristen A. Davenport, Conceptualization, Data curation, Investigation, Writing – review & editing,3 Davin M. Henderson, Conceptualization, Data curation, Investigation, Methodology,1 Erin E. McNulty, Data curation, Investigation, Methodology, Writing – review & editing,1 Amy V. Nalls, Conceptualization, Investigation, Methodology, Writing – review & editing,1 Candace K. Mathiason, Conceptualization, Funding acquisition, Investigation, Supervision, Writing – review & editing,1 and Edward A. Hoover, Conceptualization, Data curation, Funding acquisition, Supervision, Writing – review & editing1,*
Byron Caughey, Editor

Abstract

The minimum infectious dose required to induce CWD infection in cervids remains unknown, as does whether peripherally shed prions and/or multiple low dose exposures are important factors in CWD transmission. With the goal of better understand CWD infection in nature, we studied oral exposures of deer to very low doses of CWD prions and also examined whether the frequency of exposure or prion source may influence infection and pathogenesis. We orally inoculated white-tailed deer with either single or multiple divided doses of prions of brain or saliva origin and monitored infection by serial longitudinal tissue biopsies spanning over two years. We report that oral exposure to as little as 300 nanograms (ng) of CWD-positive brain or to saliva containing seeding activity equivalent to 300 ng of CWD-positive brain, were sufficient to transmit CWD disease. This was true whether the inoculum was administered as a single bolus or divided as three weekly 100 ng exposures. However, when the 300 ng total dose was apportioned as 10, 30 ng doses delivered over 12 weeks, no infection occurred. While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.

SNIP...

In conclusion, we have attempted to model and better understand CWD infection relative to natural exposure. The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic.


https://pubmed.ncbi.nlm.nih.gov/34111230/

Successful transmission of the chronic wasting disease (CWD) agent to white-tailed deer by intravenous blood transfusion

Author links open overlay panelNajiba Mammadova a b, Eric Cassmann a b, Justin J. Greenlee a

https://doi.org/10.1016/j.rvsc.2020.10.009

Highlights

•The chronic wasting disease (CWD) agent efficiently transmits between white-tailed deer.

•Blood from CWD infected deer contains infectious prions.

•A single intravenous blood transfusion resulted in CWD transmission with an incubation of 25.6 months for the GG96 recipient.

•The GS96 recipient had a longer incubation of 43.6 months.

Abstract

Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy (TSEs) that affects free-ranging and captive cervid species. The infectious agent of CWD may be transmitted from ingestion of prions shed in bodily fluids (e.g. feces, urine, saliva, placenta tissue) of infected animals, contaminated pastures, and/or decomposing carcasses from dead animals. Studies have also demonstrated prion infectivity in whole blood or blood fractions of CWD infected animals. To determine if CWD-infected blood contained sufficient levels of prion infectivity to cause disease, recipient deer were inoculated intravenously (IV) with blood derived from a CWD-infected white-tailed deer. We found that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood transfusion. The incubation period was associated with recipient prion protein genotype at codon 96 with the GG96 recipient incubating for 25.6 months and the GS96 recipient incubating for 43.6 months. This study complements and supports an earlier finding that CWD can be transmitted to deer by intravenous blood transfusion from white-tailed deer with CWD.

SNIP...

We demonstrate here that the CWD agent can be successfully transmitted to white-tailed deer by a single intravenous blood transfusion from CWD-infected white-tailed deer. The incubation period appeared to be associated with recipient genotype with the GG96 deer (940) incubating for 25.6 months, while the GS96 deer (941) incubated for 43.6 months; however, we take into consideration the limitation of the small sample size in this study. While a previous and larger study showed similar results, we determined that only 100 mL of CWD-infected blood (~2.5 times less than previously shown in (Mathiason et al., 2010)) contained sufficient levels of prion infectivity to cause disease. The identification of blood-borne transmission of the CWD agent is important in reinforcing the risk of exposure to CWD via blood as well as the possibility of hematogenous transmission of the CWD agent through insect vector. Finally, these results further highlight the importance of developing a sensitive and reproducible blood-based test to detect pre-clinical CWD, and warrant the continued advancement and evaluation of sensitive antemortem diagnostic tests for the detection of PrPSc in blood of asymptomatic cervids early in the incubation period.

Keywords

Blood transfusion Cervid CWD Prion disease Prions in blood White-tailed deer


CWD TO HUMANS, What If, has it already happened?


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.


PART 2. TPWD CHAPTER 65. DIVISION 1. CWD


31 TAC §§65.82, 65.85, 65.88


The Texas Parks and Wildlife Commission in a duly noticed meeting on May 25, 2023 adopted amendments to 31 TAC §§65.82, 65.85, and §65.88, concerning Disease Detection and Response, without changes to the proposed text as published in the April 21, 2023, issue of the Texas Register (48 TexReg 2048). The rules will not be republished.


***> Currently, there is scientific evidence to suggest that CWD has zoonotic potential; however, no confirmed cases of CWD have been found in humans.



17 DETECTION OF CHRONIC WASTING DISEASE PRIONS IN PROCESSED MEATS.


Rebeca Benavente1, Francisca Bravo1,2, Paulina Soto1,2, J. Hunter Reed3, Mitch Lockwood3, Rodrigo Morales1,2


1Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, USA. 2Universidad Bernardo O’Higgins, Santiago, Chile. 3Texas Parks and Wildlife, Austin, USA


Abstract


The zoonotic potential of chronic wasting disease (CWD) remains unknown. Currently, there are no known natural cases of CWD transmission to humans but increasing evidence suggests that the host range of CWD is not confined only to cervid species. Alarmingly, recent experimental evidence suggests that certain CWD isolates can induce disease in non-human primates. While the CDC strongly recommends determining CWD status in animals prior to consumption, this practice is voluntary. Consequently, it is plausible that a proportion of the cervid meat entering the human food chain may be contaminated with CWD. Of additional concern is that traditional diagnostic techniques used to detect CWD have relatively low sensitivity and are only approved for use in tissues other than those typically ingested by humans. In this study, we analyzed different processed meats derived from a pre-clinical, CWD-positive free-ranging elk. Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***>To confirm the resilience of CWD-prions to traditional cooking methods, we grilled and boiled the meat products and evaluated them for any remnant PMCA seeding activity. Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking. 


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


***> Products tested included filets, sausages, boneless steaks, burgers, ham steaks, seasoned chili meats, and spiced meats. 


***> CWD-prion presence in these products were assessed by PMCA using deer and elk substrates. 


***> Our results show positive prion detection in all products. 


***> Results confirmed the presence of CWD-prions in these meat products suggesting that infectious particles may still be available to people even after cooking.


***> Our results strongly suggest ongoing human exposure to CWD-prions and raise significant concerns of zoonotic transmission through ingestion of CWD contaminated meat products. 


=====


Transmission of prion infectivity from CWD-infected macaque tissues to rodent models demonstrates the zoonotic potential of chronic wasting disease.


Samia Hannaoui1,2, Ginny Cheng1,2, Wiebke Wemheuer3, Walter Schulz-Schaeffer3, Sabine Gilch1,2, Hermann Schatzl1,2 1University of Calgary, Calgary, Canada. 2Calgary Prion Research Unit, Calgary, Canada. 3Institute of Neuropathology, Medical Faculty, Saarland University, Homburg/Saar, Germany


***> Further passage to cervidized mice revealed transmission with a 100% attack rate. 


***> Our findings demonstrate that macaques, considered the best model for the zoonotic potential of prions, were infected upon CWD challenge, including the oral one. 


****> The disease manifested as atypical in macaques and initial transgenic mouse transmissions, but with infectivity present at all times, as unveiled in the bank vole model with an unusual tissue tropism. 


***> Epidemiologic surveillance of prion disease among cervid hunters and people likely to have consumed venison contaminated with chronic wasting disease


=====



Transmission of Cervid Prions to Humanized Mice Demonstrates the Zoonotic Potential of CWD


Aims: Chronic wasting disease (CWD), a prion disease of cervids, spreads efficiently among wild and farmed animals. Potential transmission to humans of CWD is a growing concern due to its increasing prevalence. Here, we aimed to determine the zoonotic potential of CWD using a mouse model for human prion diseases.


Material and Methods: Transgenic mice overexpressing human PrPChomozygous for methionine at codon 129 (tg650) were inoculated intracerebrally with brain homogenates of white-tailed deer infected with Wisc-1/CWD1 or 116AG CWD strains. Mice were monitored for clinical signs and were euthanized at terminal disease. Brains were tested by RT-QuIC, western blot upon PK digestion, and immunohistochemistry; fecal homogenates were analyzed by RT-QuIC. Brain/spinal cord and fecal homogenates of CWD-inoculated tg650 mice were inoculated into tg650 mice or bank voles. Brain homogenates of bank voles inoculated with fecal homogenates of CWD-infected tg650 mice were used for second passage in bank voles.


Results: Here, we provide the strongest evidence supporting the zoonotic potential of CWD prions, and their possible phenotype in humans. Inoculation of mice expressing human PrPCwith deer CWD isolates (strains Wisc-1 and 116AG) resulted in atypical clinical manifestations in > 75% of the mice, with myoclonus as leading clinical sign. Most of tg650brain homogenates were positive for seeding activity in RT-QuIC. Clinical disease and presentation was transmissible to tg650 mice and bank voles. Intriguingly, protease-resistant PrP in the brain of tg650 mice resembled that found in a familial human prion disease and was transmissible upon passage. Abnormal PrP aggregates upon infection with Wisc-1 were detectable in thalamus, hypothalamus, and midbrain/pons regions.


Unprecedented in human prion disease, feces of CWD-inoculated tg650 mice harbored prion seeding activity and infectious prions, as shown by inoculation of bank voles and tg650 with fecal homogenates.


Conclusions: This is the first evidence that CWD can infect humans and cause disease with a distinctive clinical presentation, signature, and tropism, which might be transmissible between humans while current diagnostic assays might fail to detect it. These findings have major implications for public health and CWD-management.


https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2091286


PLoS One. 2020; 15(8): e0237410. Published online 2020 Aug 20. doi: 10.1371/journal.pone.0237410 PMCID: PMC7446902 PMID: 32817706 


Very low oral exposure to prions of brain or saliva origin can transmit chronic wasting disease 


Abstract 


While low-dose exposures to prions of brain or saliva origin prolonged the time from inoculation to first detection of infection, once infection was established, we observed no differences in disease pathogenesis. These studies suggest that the CWD minimum infectious dose approximates 100 to 300 ng CWD-positive brain (or saliva equivalent), and that CWD infection appears to conform more with a threshold than a cumulative dose dynamic.


snip...


The results demonstrate: (a) that the minimum CWD oral infectious dose is vastly lower than historical studies used to establish infection; (b) that a direct relationship exists between dose and incubation time to first prion replication detection in tonsils, irrespective of genotype; (c) that a difference was not discernible between brain vs. saliva source prions in ability to establish infection or in resultant disease course; and (d) that the CWD infection process appears to conform more to a threshold dose than an accumulative dose dynamic. 


https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7446902/


HIGHLIGHTS OF THIS STUDY


================================


Our results suggest that CWD might infect humans, although the transmission barrier is likely higher compared to zoonotic transmission of cattle prions. Notably, our data suggest a different clinical presentation, prion signature, and tissue tropism, which causes challenges for detection by current diagnostic assays. Furthermore, the presence of infectious prions in feces is concerning because if this occurs in humans, it is a source for human-to-human transmission. These findings have strong implications for public health and CWD management.


In this study, we evaluated the zoonotic potential of CWD using a transgenic mouse model overexpressing human M129-PrPC (tg650[12]). We inoculated tg650 mice intracerebrally with two deer CWD isolates, Wisc-1 and 116AG [22, 23, 27, 29]. We demonstrate that this transgenic line was susceptible to infection with CWD prions and displayed a distinct leading clinical sign, an atypical PrPSc signature and unusual fecal shedding of infectious prions. Importantly, these prions generated by the human PrP transgenic mice were transmissible upon passage. Our results are the first evidence of a zoonotic risk of CWD when using one of the most common CWD strains, Wisc-1/CWD1 for infection. We demonstrated in a human transgenic mouse model that the species barrier for transmission of CWD to humans is not absolute. The fact that its signature was not typical raises the questions whether CWD would manifest in humans as a subclinical infection, whether it would arise through direct or indirect transmission including an intermediate host, or a silent to uncovered human-to-human transmission, and whether current detection techniques will be suffcient to unveil its presence.


Our findings strongly suggest that CWD should be regarded as an actual public health risk. Here, we use humanized mice to show that CWD prions can cross the species barrier to humans, and remarkably, infectious prions can be excreted in feces.


Our results indicate that if CWD crosses the species-barrier to humans, it is unlikely to resemble the most common forms of human prion diseases with respect to clinical signs, tissue tropism and PrPSc signature. For instance, PrPSc in variable protease-sensitive prionopathy (VPSPr), a sporadic form of human prion disease, and in the genetic form Gerstmann-Sträussler-Scheinker syndrome (GSS) is defined by an atypical PK-resistant PrPSc fragment that is non-glycosylated and truncated at both C- and N-termini, with a molecular weight between 6 and 8 kDa [24, 44–46]. These biochemical features are unique and distinctive from PrPSc (PrP27-30) found in most other human or animal prion disease. The atypical PrPSc signature detected in brain homogenate of tg650 mice #321 (1st passage) and #3063 (2nd passage), and the 7–8 kDa fragment (Figs. 2, 4) are very similar to that of GSS, both in terms of migration profile and the N-terminal cleavage site.


CWD in humans might remain subclinical but with PrPSc deposits in the brain with an unusual morphology that does not resemble the patterns usually seen in different prion diseases (e.g., mouse #328; Fig. 3), clinical with untraceable abnormal PrP (e.g., mouse #327) but still transmissible and uncovered upon subsequent passage (e.g., mouse #3063; Fig. 4), or prions have other reservoirs than the usual ones, hence the presence of infectivity in feces (e.g., mouse #327) suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.


suggesting a potential for human-to-human transmission and a real iatrogenic risk that might be unrecognizable.


=================================


Supplementary Information The online version contains supplementary material available at 


https://doi.org/10.1007/s00401-022-02482-9


snip...see full text;


https://link.springer.com/article/10.1007/s00401-022-02482-9


https://link.springer.com/content/pdf/10.1007/s00401-022-02482-9.pdf


EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 


First published: 17 January 2018 https://doi.org/10.2903/j.efsa.2018.5132


also, see; 


8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. 


***> In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. 


The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers.. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 


https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5132


Research Paper


Cellular prion protein distribution in the vomeronasal organ, parotid, and scent glands of white-tailed deer and mule deer


Anthony Ness, Aradhana Jacob, Kelsey Saboraki, Alicia Otero, Danielle Gushue, Diana Martinez Moreno, Melanie de Peña, Xinli Tang, Judd Aiken, Susan Lingle & Debbie McKenzieORCID Icon show less


Pages 40-57 | Received 03 Feb 2022, Accepted 13 May 2022, Published online: 29 May 2022


Download citation


https://doi.org/10.1080/19336896.2022.2079888


ABSTRACT


Chronic wasting disease (CWD) is a contagious and fatal transmissible spongiform encephalopathy affecting species of the cervidae family. CWD has an expanding geographic range and complex, poorly understood transmission mechanics. CWD is disproportionately prevalent in wild male mule deer and male white-tailed deer. Sex and species influences on CWD prevalence have been hypothesized to be related to animal behaviours that involve deer facial and body exocrine glands. Understanding CWD transmission potential requires a foundational knowledge of the cellular prion protein (PrPC) in glands associated with cervid behaviours. In this study, we characterized the presence and distribution of PrPC in six integumentary and two non-integumentary tissues of hunter-harvested mule deer (Odocoileus hemionus) and white-tailed deer (O. virginianus). We report that white-tailed deer expressed significantly more PrPC than their mule deer in the parotid, metatarsal, and interdigital glands. Females expressed more PrPC than males in the forehead and preorbital glands. The distribution of PrPC within the integumentary exocrine glands of the face and legs were localized to glandular cells, hair follicles, epidermis, and immune cell infiltrates. All tissues examined expressed sufficient quantities of PrPC to serve as possible sites of prion initial infection, propagation, and shedding.


https://www.tandfonline.com/doi/full/10.1080/19336896.2022.2079888


ARS RESEARCH Generation of human chronic wasting disease in transgenic mice 


Publication Acceptance Date: 9/8/2021


Research Project: Pathobiology, Genetics, and Detection of Transmissible Spongiform Encephalopathies Location: Virus and Prion Research


Title: Generation of human chronic wasting disease in transgenic mice


Author item WANG, ZERUI - Case Western Reserve University (CWRU) item QIN, KEFENG - University Of Chicago item CAMACHO, MANUEL - Case Western Reserve University (CWRU) item SHEN, PINGPING - Case Western Reserve University (CWRU) item YUAN, JUE - Case Western Reserve University (CWRU) item Greenlee, Justin item CUI, LI - Jilin University item KONG, QINGZHONG - Case Western Reserve University (CWRU) item MASTRIANNI, JAMES - University Of Chicago item ZOU, WEN-QUAN - Case Western Reserve University (CWRU)


Submitted to: Acta Neuropathologica Publication Type: Peer Reviewed Journal Publication Acceptance Date: 9/8/2021 Publication Date: N/A Citation: N/A


Interpretive Summary: Prion diseases are invariably fatal neurologic diseases for which there is no known prevention or cure. Chronic wasting disease (CWD) is the prion disease of deer and elk and is present in farmed and free ranging herds throughout North America. To date there is no clear evidence that the CWD agent could be transmitted to humans. This manuscript describes the use of an in vitro technique, cell-free serial protein misfolding cyclic amplification (sPMCA), to generate a CWD prion that is infectious to transgenic mice expressing the human prion protein. This study provides the first evidence that CWD prions may be able to cause misfolding in the human prion protein. This information will impact medical experts and those involved in making policy for farmed cervids and wildlife.


Technical Abstract: Chronic wasting disease (CWD) is a cervid spongiform encephalopathy or prion disease caused by the infectious prion or PrPSc, a misfolded conformer of cellular prion protein (PrPC). It has rapidly spread in North America and also has been found in Asia and Europe. In contrast to the zoonotic mad cow disease that is the first animal prion disease found transmissible to humans, the transmissibility of CWD to humans remains uncertain although most previous studies have suggested that humans may not be susceptible to CWD. Here we report the generation of an infectious human PrPSc by seeding CWD PrPSc in normal human brain PrPC through the in vitro cell-free serial protein misfolding cyclic amplification (sPMCA). Western blotting confirms that the sPMCA-induced proteinase K-resistant PrPSc is a human form, evidenced by a PrP-specific antibody that recognizes human but not cervid PrP. Remarkably, two lines of humanized transgenic (Tg) mice expressing human PrP-129Val/Val (VV) or -129Met/Met (MM) polymorphism develop prion disease at 233 ± 6 (mean ± SE) days post-inoculation (dpi) and 552 ± 27 dpi, respectively, upon intracerebral inoculation with the sPMCA-generated PrPSc. The brain of diseased Tg mice reveals the electrophoretic profile of PrPSc similar to sporadic Creutzfeldt-Jakob disease (sCJD) MM1 or VV2 subtype but different neuropathological patterns. We believe that our study provides the first evidence that CWD PrPSc is able to convert human PrPC into PrPSc in vitro and the CWD-derived human PrPSc mimics atypical sCJD subtypes in humanized Tg mice.


https://www.ars.usda.gov/research/publications/publication/?seqNo115=382551


''The brain of diseased Tg mice reveals the electrophoretic profile of PrPSc similar to sporadic Creutzfeldt-Jakob disease (sCJD) MM1 or VV2 subtype but different neuropathological patterns.'' 


''We believe that our study provides the first evidence that CWD PrPSc is able to convert human PrPC into PrPSc in vitro and the CWD-derived human PrPSc mimics atypical sCJD subtypes in humanized Tg mice.''


Published: 26 September 2021


Generation of human chronic wasting disease in transgenic mice


Zerui Wang, Kefeng Qin, Manuel V. Camacho, Ignazio Cali, Jue Yuan, Pingping Shen, Justin Greenlee, Qingzhong Kong, James A. Mastrianni & Wen-Quan Zou


Acta Neuropathologica Communications volume 9, Article number: 158 (2021)


Abstract


Chronic wasting disease (CWD) is a cervid prion disease caused by the accumulation of an infectious misfolded conformer (PrPSc) of cellular prion protein (PrPC). It has been spreading rapidly in North America and also found in Asia and Europe. Although bovine spongiform encephalopathy (i.e. mad cow disease) is the only animal prion disease known to be zoonotic, the transmissibility of CWD to humans remains uncertain. Here we report the generation of the first CWD-derived infectious human PrPSc by elk CWD PrPSc-seeded conversion of PrPC in normal human brain homogenates using in vitro protein misfolding cyclic amplification (PMCA). Western blotting with human PrP selective antibody confirmed that the PMCA-generated protease-resistant PrPSc was derived from the human PrPC substrate. Two lines of humanized transgenic mice expressing human PrP with either Val or Met at the polymorphic codon 129 developed clinical prion disease following intracerebral inoculation with the PMCA-generated CWD-derived human PrPSc. Diseased mice exhibited distinct PrPSc patterns and neuropathological changes in the brain. Our study, using PMCA and animal bioassays, provides the first evidence that CWD PrPSc can cross the species barrier to convert human PrPC into infectious PrPSc that can produce bona fide prion disease when inoculated into humanized transgenic mice.


Snip...


It is worth noting that the annual number of sporadic CJD (sCJD) cases in the USA has increased, with the total number of suspected and confirmed sCJD cases rising from 284 in 2003 to 511 in 2017 (https://www.cdc.gov/prions/cjd/occurrence-transmission.html). The greatly enhanced CJD surveillance and an aging population in the USA certainly contributed to the observed increase in annual sCJD case numbers in recent years, but the possibility cannot be excluded that some of the increased sCJD prevalence is linked to CWD exposure.


In the present study, using serial protein misfolding cyclic amplification (sPMCA) assay we generate PrPSc by seeding CWD prions in normal human brain homogenates. Importantly, we reveal that two lines of humanized Tg mice expressing human PrP-129VV and 129MM develop prion diseases upon intracerebral inoculation of the abnormal PrP generated by sPMCA. We believe that our study provides the first opportunity to dissect the clinical, pathological and biochemical features of the CWD-derived human prion disease in two lines of humanized Tg mice expressing two major human PrP genotypes, respectively.


https://actaneurocomms.biomedcentral.com/articles/10.1186/s40478-021-01262-y


i thought i might share some news about cwd zoonosis that i got, that i cannot share or post to the public yet, i promised for various reasons, one that it will cause a shit storm for sure, but it was something i really already knew from previous studies, but, i was told that ;


==================


''As you can imagine, 2 and 5 (especially 5) may raise alarms.  The evidence we have for 4 are not as strong or tight as I would like to have.   At this point, please do not post any of the points publicly yet, but you can refer to points 1-3 in private discussions and all 5 points when discussing with relevant public officials to highlight the long-term risks of CWD zoonosis.''


====================


so, i figure your as about as official as it gets, and i think this science is extremely important for you to know and to converse about with your officials. it's about to burn a whole in my pocket. this is about as close as it will ever get for cwd zoonosis to be proven in my time, this and what Canada Czub et al found with the Macaques, plus an old study from cjd surveillance unit back that showed cjd and a 9% increase in risk from folks that eat venison, i will post all this below for your files Sir. i remember back in the BSE nvCJD days, from when the first BSE case in bovine was confirmed around 1984 maybe 83, i forget the good vets named that screwed it up first, Carol something, but from 83ish to 95 96 when nvCJD was linked to humans from BSE in cattle, so that took 10 to 15 years. hell, at that rate, especially with Texas and cwd zoonsis, hell, i'll be dead before it's official, if ever, so here ya go Sir. there was a grant study on cwd zoonosis that had been going on for some time, i followed it over the years, then the grant date for said study had expired, so, i thought i would write the good Professor about said study i.e. Professor Kong, CWRU et al. i will post the grant study abstract first, and then after that, what reply i got back, about said study that i was told not to post/publish...


CWD ZOONOSIS GRANT FIRST;


===============


Cervid to human prion transmission


Kong, Qingzhong 


Case Western Reserve University, Cleveland, OH, United States


 Abstract Prion disease is transmissible and invariably fatal. Chronic wasting disease (CWD) is the prion disease affecting deer, elk and moose, and it is a widespread and expanding epidemic affecting 22 US States and 2 Canadian provinces so far. CWD poses the most serious zoonotic prion transmission risks in North America because of huge venison consumption (>6 million deer/elk hunted and consumed annually in the USA alone), significant prion infectivity in muscles and other tissues/fluids from CWD-affected cervids, and usually high levels of individual exposure to CWD resulting from consumption of the affected animal among often just family and friends. However, we still do not know whether CWD prions can infect humans in the brain or peripheral tissues or whether clinical/asymptomatic CWD zoonosis has already occurred, and we have no essays to reliably detect CWD infection in humans. We hypothesize that: (1) The classic CWD prion strain can infect humans at low levels in the brain and peripheral lymphoid tissues; (2) The cervid-to-human transmission barrier is dependent on the cervid prion strain and influenced by the host (human) prion protein (PrP) primary sequence; (3) Reliable essays can be established to detect CWD infection in humans; and (4) CWD transmission to humans has already occurred. We will test these hypotheses in 4 Aims using transgenic (Tg) mouse models and complementary in vitro approaches. 


Aim 1 will prove that the classical CWD strain may infect humans in brain or peripheral lymphoid tissues at low levels by conducting systemic bioassays in a set of humanized Tg mouse lines expressing common human PrP variants using a number of CWD isolates at varying doses and routes. Experimental human CWD samples will also be generated for Aim 3. 


Aim 2 will test the hypothesis that the cervid-to-human prion transmission barrier is dependent on prion strain and influenced by the host (human) PrP sequence by examining and comparing the transmission efficiency and phenotypes of several atypical/unusual CWD isolates/strains as well as a few prion strains from other species that have adapted to cervid PrP sequence, utilizing the same panel of humanized Tg mouse lines as in Aim 1. 


Aim 3 will establish reliable essays for detection and surveillance of CWD infection in humans by examining in details the clinical, pathological, biochemical and in vitro seeding properties of existing and future experimental human CWD samples generated from Aims 1-2 and compare them with those of common sporadic human Creutzfeldt-Jakob disease (sCJD) prions. 


Aim 4 will attempt to detect clinical CWD-affected human cases by examining a significant number of brain samples from prion-affected human subjects in the USA and Canada who have consumed venison from CWD-endemic areas utilizing the criteria and essays established in Aim 3. The findings from this proposal will greatly advance our understandings on the potential and characteristics of cervid prion transmission in humans, establish reliable essays for CWD zoonosis and potentially discover the first case(s) of CWD infection in humans.


Public Health Relevance There are significant and increasing human exposure to cervid prions because chronic wasting disease (CWD, a widespread and highly infectious prion disease among deer and elk in North America) continues spreading and consumption of venison remains popular, but our understanding on cervid-to-human prion transmission is still very limited, raising public health concerns. This proposal aims to define the zoonotic risks of cervid prions and set up and apply essays to detect CWD zoonosis using mouse models and in vitro methods. The findings will greatly expand our knowledge on the potentials and characteristics of cervid prion transmission in humans, establish reliable essays for such infections and may discover the first case(s) of CWD infection in humans.


 Funding Agency Agency National Institute of Health (NIH) Institute National Institute of Neurological Disorders and Stroke (NINDS) Type Research Project (R01) Project # 1R01NS088604-01A1 Application # 9037884 Study Section Cellular and Molecular Biology of Neurodegeneration Study Section (CMND) Program Officer Wong, May Project Start 2015-09-30 Project End 2019-07-31 Budget Start 2015-09-30 Budget End 2016-07-31 Support Year 1 Fiscal Year 2015 Total Cost $337,507 Indirect Cost $118,756


snip... 


https://grantome.com/grant/NIH/R01-NS088604-01A1#panel-abstract


Professor Kongs reply to me just this month about above grant study that has NOT been published in peer reveiw yet...


=================================


Here is a brief summary of our findings:


snip...can't post, made a promise...tss


On Sat, Apr 3, 2021 at 12:19 PM Terry Singeltary <flounder9@verizon.net> wrote:


snip...


end...tss


==============


CWD ZOONOSIS THE FULL MONTY TO DATE


International Conference on Emerging Diseases, Outbreaks & Case Studies & 16th Annual Meeting on Influenza March 28-29, 2018 | Orlando, USA


Qingzhong Kong


Case Western Reserve University School of Medicine, USA


Zoonotic potential of chronic wasting disease prions from cervids


Chronic wasting disease (CWD) is the prion disease in cervids (mule deer, white-tailed deer, American elk, moose, and reindeer). It has become an epidemic in North America, and it has been detected in the Europe (Norway) since 2016. The widespread CWD and popular hunting and consumption of cervid meat and other products raise serious public health concerns, but questions remain on human susceptibility to CWD prions, especially on the potential difference in zoonotic potential among the various CWD prion strains. We have been working to address this critical question for well over a decade. We used CWD samples from various cervid species to inoculate transgenic mice expressing human or elk prion protein (PrP). We found infectious prions in the spleen or brain in a small fraction of CWD-inoculated transgenic mice expressing human PrP, indicating that humans are not completely resistant to CWD prions; this finding has significant ramifications on the public health impact of CWD prions. The influence of cervid PrP polymorphisms, the prion strain dependence of CWD-to-human transmission barrier, and the characterization of experimental human CWD prions will be discussed.


Speaker Biography Qingzhong Kong has completed his PhD from the University of Massachusetts at Amherst and Post-doctoral studies at Yale University. He is currently an Associate Professor of Pathology, Neurology and Regenerative Medicine. He has published over 50 original research papers in reputable journals (including Science Translational Medicine, JCI, PNAS and Cell Reports) and has been serving as an Editorial Board Member on seven scientific journals. He has multiple research interests, including public health risks of animal prions (CWD of cervids and atypical BSE of cattle), animal modeling of human prion diseases, mechanisms of prion replication and pathogenesis, etiology of sporadic Creutzfeldt-Jacob disease (CJD) in humans, normal cellular PrP in the biology and pathology of multiple brain and peripheral diseases, proteins responsible for the α-cleavage of cellular PrP, as well as gene therapy and DNA vaccination.


qxk2@case.edu 


https://www.alliedacademies.org/conference-abstracts-files/zoonotic-potential-of-chronic-wasting-disease-prions-from.pdf


https://prionconference.blogspot.com/2018/02/prion-round-table-conference-2018-may.html


http://prionconference.blogspot.com/


SUNDAY, JULY 25, 2021 


North American and Norwegian Chronic Wasting Disease prions exhibit different potential for interspecies transmission and zoonotic risk 


''Our data suggest that reindeer and red deer from Norway could be the most transmissible CWD prions to other mammals, whereas North American CWD prions were more prone to generate human prions in vitro.''


https://chronic-wasting-disease.blogspot.com/2021/07/north-american-and-norwegian-chronic.html


MONDAY, JULY 19, 2021 


***> U Calgary researchers at work on a vaccine against a fatal infectious disease affecting deer and potentially people


https://chronic-wasting-disease.blogspot.com/2021/07/u-calgary-researchers-at-work-on.html


Prion Conference 2018 Abstracts


BSE aka MAD COW DISEASE, was first discovered in 1984, and it took until 1995 to finally admit that BSE was causing nvCJD, the rest there is history, but that science is still evolving i.e. science now shows that indeed atypical L-type BSE, atypical Nor-98 Scrapie, and typical Scrapie are all zoonosis, zoonotic for humans, there from. 


HOW long are we going to wait for Chronic Wasting Disease, CWD TSE Prion of Cervid, and zoonosis, zoonotic tranmission to humans there from?


Studies have shown since 1994 that humans are susceptible to CWD TSE Prion, so, what's the hold up with making CWD a zoonotic zoonosis disease, the iatrogenic transmissions there from is not waiting for someone to make a decision.


Prion Conference 2018 Abstracts


P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States


Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1)


(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.


Background


Chronic wasting disease (CWD) is a prion disease of deer and elk that has been identified in freeranging cervids in 23 US states. While there is currently no epidemiological evidence for zoonotic transmission through the consumption of contaminated venison, studies suggest the CWD agent can cross the species barrier in experimental models designed to closely mimic humans. We compared rates of human prion disease in states with and without CWD to examine the possibility of undetermined zoonotic transmission.


Methods


Death records from the National Center for Health Statistics, case records from the National Prion Disease Pathology Surveillance Center, and additional state case reports were combined to create a database of human prion disease cases from 2003-2015. Identification of CWD in each state was determined through reports of positive CWD tests by state wildlife agencies. Age- and race-adjusted mortality rates for human prion disease, excluding cases with known etiology, were determined for four categories of states based on CWD occurrence: highly endemic (>16 counties with CWD identified in free-ranging cervids); moderately endemic (3-10 counties with CWD); low endemic (1-2 counties with CWD); and no CWD states. States were counted as having no CWD until the year CWD was first identified. Analyses stratified by age, sex, and time period were also conducted to focus on subgroups for which zoonotic transmission would be more likely to be detected: cases <55 years old, male sex, and the latter half of the study (2010-2015).


Results


Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states (rate ratio [RR]: 1.12, 95% confidence interval [CI] = 1.01 - 1.23), as did low endemic states (RR: 1.15, 95% CI = 1.04 - 1.27). Moderately endemic states did not have an elevated mortality rate (RR: 1.05, 95% CI = 0.93 - 1.17). In age-stratified analyses, prion disease mortality rates among the <55 year old population were elevated for moderately endemic states (RR: 1.57, 95% CI = 1.10 – 2.24) while mortality rates were elevated among those ≥55 for highly endemic states (RR: 1.13, 95% CI = 1.02 - 1.26) and low endemic states (RR: 1.16, 95% CI = 1.04 - 1.29). In other stratified analyses, prion disease mortality rates for males were only elevated for low endemic states (RR: 1.27, 95% CI = 1.10 - 1.48), and none of the categories of CWD-endemic states had elevated mortality rates for the latter time period (2010-2015).


Conclusions


While higher prion disease mortality rates in certain categories of states with CWD in free-ranging cervids were noted, additional stratified analyses did not reveal markedly elevated rates for potentially sensitive subgroups that would be suggestive of zoonotic transmission. Unknown confounding factors or other biases may explain state-by-state differences in prion disease mortality.


=====


P172 Peripheral Neuropathy in Patients with Prion Disease


Wang H(1), Cohen M(1), Appleby BS(1,2)


(1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio.


Prion disease is a fatal progressive neurodegenerative disease due to deposition of an abnormal protease-resistant isoform of prion protein. Typical symptoms include rapidly progressive dementia, myoclonus, visual disturbance and hallucinations. Interestingly, in patients with prion disease, the abnormal protein canould also be found in the peripheral nervous system. Case reports of prion deposition in peripheral nerves have been reported. Peripheral nerve involvement is thought to be uncommon; however, little is known about the exact prevalence and features of peripheral neuropathy in patients with prion disease.


We reviewed autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017. We collected information regarding prion protein diagnosis, demographics, comorbidities, clinical symptoms, physical exam, neuropathology, molecular subtype, genetics lab, brain MRI, image and EMG reports. Our study included 104 patients. Thirteen (12.5%) patients had either subjective symptoms or objective signs of peripheral neuropathy. Among these 13 patients, 3 had other known potential etiologies of peripheral neuropathy such as vitamin B12 deficiency or prior chemotherapy. Among 10 patients that had no other clear etiology, 3 (30%) had familial CJD. The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%). The Majority of cases wasere male (60%). Half of them had exposure to wild game. The most common subjective symptoms were tingling and/or numbness of distal extremities. The most common objective finding was diminished vibratory sensation in the feet. Half of them had an EMG with the findings ranging from fasciculations to axonal polyneuropathy or demyelinating polyneuropathy.


Our study provides an overview of the pattern of peripheral neuropathy in patients with prion disease. Among patients with peripheral neuropathy symptoms or signs, majority has polyneuropathy. It is important to document the baseline frequency of peripheral neuropathy in prion diseases as these symptoms may become important when conducting surveillance for potential novel zoonotic prion diseases.


=====


P177 PrP plaques in methionine homozygous Creutzfeldt-Jakob disease patients as a potential marker of iatrogenic transmission


Abrams JY (1), Schonberger LB (1), Cali I (2), Cohen Y (2), Blevins JE (2), Maddox RA (1), Belay ED (1), Appleby BS (2), Cohen ML (2)


(1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA.


Background


Sporadic Creutzfeldt-Jakob disease (CJD) is widely believed to originate from de novo spontaneous conversion of normal prion protein (PrP) to its pathogenic form, but concern remains that some reported sporadic CJD cases may actually be caused by disease transmission via iatrogenic processes. For cases with methionine homozygosity (CJD-MM) at codon 129 of the PRNP gene, recent research has pointed to plaque-like PrP deposition as a potential marker of iatrogenic transmission for a subset of cases. This phenotype is theorized to originate from specific iatrogenic source CJD types that comprise roughly a quarter of known CJD cases.


Methods


We reviewed scientific literature for studies which described PrP plaques among CJD patients with known epidemiological links to iatrogenic transmission (receipt of cadaveric human grown hormone or dura mater), as well as in cases of reported sporadic CJD. The presence and description of plaques, along with CJD classification type and other contextual factors, were used to summarize the current evidence regarding plaques as a potential marker of iatrogenic transmission. In addition, 523 cases of reported sporadic CJD cases in the US from January 2013 through September 2017 were assessed for presence of PrP plaques.


Results


We identified four studies describing 52 total cases of CJD-MM among either dura mater recipients or growth hormone recipients, of which 30 were identified as having PrP plaques. While sporadic cases were not generally described as having plaques, we did identify case reports which described plaques among sporadic MM2 cases as well as case reports of plaques exclusively in white matter among sporadic MM1 cases. Among the 523 reported sporadic CJD cases, 0 of 366 MM1 cases had plaques, 2 of 48 MM2 cases had kuru plaques, and 4 of 109 MM1+2 cases had either kuru plaques or both kuru and florid plaques. Medical chart review of the six reported sporadic CJD cases with plaques did not reveal clinical histories suggestive of potential iatrogenic transmission.


Conclusions


PrP plaques occur much more frequently for iatrogenic CJD-MM cases compared to sporadic CJDMM cases. Plaques may indicate iatrogenic transmission for CJD-MM cases without a type 2 Western blot fragment. The study results suggest the absence of significant misclassifications of iatrogenic CJD as sporadic. To our knowledge, this study is the first to describe grey matter kuru plaques in apparently sporadic CJD-MM patients with a type 2 Western blot fragment.


=====


P180 Clinico-pathological analysis of human prion diseases in a brain bank series


Ximelis T (1), Aldecoa I (1,2), Molina-Porcel L (1,3), Grau-Rivera O (4), Ferrer I (5), Nos C (6), Gelpi E (1,7), Sánchez-Valle R (1,4)


(1) Neurological Tissue Bank of the Biobanc-Hospital ClÃnic-IDIBAPS, Barcelona, Spain (2) Pathological Service of Hospital ClÃnic de Barcelona, Barcelona, Spain (3) EAIA Trastorns Cognitius, Centre Emili Mira, Parc de Salut Mar, Barcelona, Spain (4) Department of Neurology of Hospital ClÃnic de Barcelona, Barcelona, Spain (5) Institute of Neuropathology, Hospital Universitari de Bellvitge, Hospitalet de Llobregat, Barcelona (6) General subdirectorate of Surveillance and Response to Emergencies in Public Health, Department of Public Health in Catalonia, Barcelona, Spain (7) Institute of Neurology, Medical University of Vienna, Vienna, Austria.


Background and objective:


The Neurological Tissue Bank (NTB) of the Hospital Clínic-Institut d‘Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain is the reference center in Catalonia for the neuropathological study of prion diseases in the region since 2001. The aim of this study is to analyse the characteristics of the confirmed prion diseases registered at the NTB during the last 15 years.


Methods:


We reviewed retrospectively all neuropathologically confirmed cases registered during the period January 2001 to December 2016.


Results:


176 cases (54,3% female, mean age: 67,5 years and age range: 25-86 years) of neuropathological confirmed prion diseases have been studied at the NTB. 152 cases corresponded to sporadic Creutzfeldt-Jakob disease (sCJD), 10 to genetic CJD, 10 to Fatal Familial Insomnia, 2 to GerstmannSträussler-Scheinker disease, and 2 cases to variably protease-sensitive prionopathy (VPSPr). Within sCJD subtypes the MM1 subtype was the most frequent, followed by the VV2 histotype.


Clinical and neuropathological diagnoses agreed in 166 cases (94%). The clinical diagnosis was not accurate in 10 patients with definite prion disease: 1 had a clinical diagnosis of Fronto-temporal dementia (FTD), 1 Niemann-Pick‘s disease, 1 Lewy Body‘s Disease, 2 Alzheimer‘s disease, 1 Cortico-basal syndrome and 2 undetermined dementia. Among patients with VPSPr, 1 had a clinical diagnosis of Amyotrophic lateral sclerosis (ALS) and the other one with FTD.


Concomitant pathologies are frequent in older age groups, mainly AD neuropathological changes were observed in these subjects.


Discussion:


A wide spectrum of human prion diseases have been identified in the NTB being the relative frequencies and main characteristics like other published series. There is a high rate of agreement between clinical and neuropathological diagnoses with prion diseases. These findings show the importance that public health has given to prion diseases during the past 15 years. Continuous surveillance of human prion disease allows identification of new emerging phenotypes. Brain tissue samples from these donors are available to the scientific community. For more information please visit:


http://www.clinicbiobanc.org/banc-teixits-neurologics/mostres/en_index.html


=====


P192 Prion amplification techniques for the rapid evaluation of surface decontamination procedures


Bruyere-Ostells L (1), Mayran C (1), Belondrade M (1), Boublik Y (2), Haïk S (3), Fournier-Wirth C (1), Nicot S (1), Bougard D (1)


(1) Pathogenesis and control of chronic infections, Etablissement Français du Sang, Inserm, Université de Montpellier, Montpellier, France. (2) Centre de Recherche en Biologie cellulaire de Montpellier, CNRS, Université de Montpellier, Montpellier, France. (3) Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Université Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France.


Aims:


Transmissible Spongiform Encephalopathies (TSE) or prion diseases are a group of incurable and always fatal neurodegenerative disorders including Creutzfeldt-Jakob diseases (CJD) in humans. These pathologies include sporadic (sCJD), genetic and acquired (variant CJD) forms. By the past, sCJD and vCJD were transmitted by different prion contaminated biological materials to patients resulting in more than 400 iatrogenic cases (iCJD). The atypical nature and the biochemical properties of the infectious agent, formed by abnormal prion protein or PrPTSE, make it particularly resistant to conventional decontamination procedures. In addition, PrPTSE is widely distributed throughout the organism before clinical onset in vCJD and can also be detected in some peripheral tissues in sporadic CJD. Risk of iatrogenic transmission of CJD by contaminated medical device remains thus a concern for healthcare facilities. Bioassay is the gold standard method to evaluate the efficacy of prion decontamination procedures but is time-consuming and expensive. Here, we propose to compare in vitro prion amplification techniques: Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking Induced Conversion (RT-QuIC) for the detection of residual prions on surface after decontamination.


Methods:


Stainless steel wires, by mimicking the surface of surgical instruments, were proposed as a carrier model of prions for inactivation studies. To determine the sensitivity of the two amplification techniques on wires (Surf-PMCA and Surf-QuIC), steel wires were therefore contaminated with serial dilutions of brain homogenates (BH) from a 263k infected hamster and from a patient with sCJD (MM1 subtype). We then compared the different standard decontamination procedures including partially and fully efficient treatments by detecting the residual seeding activity on 263K and sCJD contaminated wires. We completed our study by the evaluation of marketed reagents endorsed for prion decontamination.


Results:


The two amplification techniques can detect minute quantities of PrPTSE adsorbed onto a single wire. 8/8 wires contaminated with a 10-6 dilution of 263k BH and 1/6 with the 10-8 dilution are positive with Surf-PMCA. Similar performances were obtained with Surf-QuIC on 263K: 10/16 wires contaminated with 10-6 dilution and 1/8 wires contaminated with 10-8 dilution are positive. Regarding the human sCJD-MM1 prion, Surf-QuIC allows us to detect 16/16 wires contaminated with 10-6 dilutions and 14/16 with 10-7 . Results obtained after decontamination treatments are very similar between 263K and sCJD prions. Efficiency of marketed treatments to remove prions is lower than expected.


Conclusions:


Surf-PMCA and Surf-QuIC are very sensitive methods for the detection of prions on wires and could be applied to prion decontamination studies for rapid evaluation of new treatments. Sodium hypochlorite is the only product to efficiently remove seeding activity of both 263K and sCJD prions.


=====


WA2 Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice


Schatzl HM (1, 2), Hannaoui S (1, 2), Cheng Y-C (1, 2), Gilch S (1, 2), Beekes M (3), SchulzSchaeffer W (4), Stahl-Hennig C (5) and Czub S (2, 6)


(1) University of Calgary, Calgary Prion Research Unit, Calgary, Canada (2) University of Calgary, Faculty of Veterinary Medicine, Calgary, Canada, (3) Robert Koch Institute, Berlin, Germany, (4) University of Homburg/Saar, Homburg, Germany, (5) German Primate Center, Goettingen, Germany, (6) Canadian Food Inspection Agency (CFIA), Lethbridge, Canada.


To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were found in spinal cord and brain of euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and preclinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.


See also poster P103


***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.


=====


WA16 Monitoring Potential CWD Transmission to Humans


Belay ED


Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA.


The spread of chronic wasting disease (CWD) in animals has raised concerns about increasing human exposure to the CWD agent via hunting and venison consumption, potentially facilitating CWD transmission to humans. Several studies have explored this possibility, including limited epidemiologic studies, in vitro experiments, and laboratory studies using various types of animal models. Most human exposures to the CWD agent in the United States would be expected to occur in association with deer and elk hunting in CWD-endemic areas. The Centers for Disease Control and Prevention (CDC) collaborated with state health departments in Colorado, Wisconsin, and Wyoming to identify persons at risk of CWD exposure and to monitor their vital status over time. Databases were established of persons who hunted in Colorado and Wyoming and those who reported consumption of venison from deer that later tested positive in Wisconsin. Information from the databases is periodically cross-checked with mortality data to determine the vital status and causes of death for deceased persons. Long-term follow-up of these hunters is needed to assess their risk of development of a prion disease linked to CWD exposure.


=====


P166 Characterization of CJD strain profiles in venison consumers and non-consumers from Alberta and Saskatchewan


Stephanie Booth (1,2), Lise Lamoureux (1), Debra Sorensen (1), Jennifer L. Myskiw (1,2), Megan Klassen (1,2), Michael Coulthart (3), Valerie Sim (4)


(1) Zoonotic Diseases and Special Pathogens, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg (2) Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg (3) Canadian CJD Surveillance System, Public Health Agency of Canada, Ottawa (4) Division of Neurology, Department of Medicine Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton.


Chronic wasting disease (CWD) is spreading rapidly through wild cervid populations in the Canadian provinces of Alberta and Saskatchewan. While this has implications for tourism and hunting, there is also concern over possible zoonotic transmission to humans who eat venison from infected deer. Whilst there is no evidence of any human cases of CWD to date, the Canadian CJD Surveillance System (CJDSS) in Canada is staying vigilant. When variant CJD occurred following exposure to BSE, the unique biochemical fingerprint of the pathologic PrP enabled a causal link to be confirmed. However, we cannot be sure what phenotype human CWD prions would present with, or indeed, whether this would be distinct from that see in sporadic CJD. Therefore we are undertaking a systematic analysis of the molecular diversity of CJD cases of individuals who resided in Alberta and Saskatchewan at their time of death comparing venison consumers and non-consumers, using a variety of clinical, imaging, pathological and biochemical markers. Our initial objective is to develop novel biochemical methodologies that will extend the baseline glycoform and genetic polymorphism typing that is already completed by the CJDSS. Firstly, we are reviewing MRI, EEG and pathology information from over 40 cases of CJD to select clinically affected areas for further investigation. Biochemical analysis will include assessment of the levels of protease sensitive and resistant prion protein, glycoform typing using 2D gel electrophoresis, testing seeding capabilities and kinetics of aggregation by quaking-induced conversion, and determining prion oligomer size distributions with asymmetric flow field fractionation with in-line light scattering. Progress and preliminary data will be presented. Ultimately, we intend to further define the relationship between PrP structure and disease phenotype and establish a baseline for the identification of future atypical CJD cases that may arise as a result of exposure to CWD.


=====


Source Prion Conference 2018 Abstracts


http://transmissiblespongiformencephalopathy.blogspot.com/2018/05/prion-2018-may-22-25-2018-santiago-de.html


http://chronic-wasting-disease.blogspot.com/2018/07/oral-transmission-of-cwd-into.html


http://prionconference.blogspot.com/2018/


Volume 24, Number 8—August 2018 


Research Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions


Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)


Abstract Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted.


snip...


Discussion Characterization of the transmission properties of CWD and evaluation of their zoonotic potential are important for public health purposes. Given that CWD affects several members of the family Cervidae, it seems reasonable to consider whether the zoonotic potential of CWD prions could be affected by factors such as CWD strain, cervid species, geographic location, and Prnp–PRNP polymorphic variation. We have previously used an in vitro conversion assay (PMCA) to investigate the susceptibility of the human PrP to conversion to its disease-associated form by several animal prion diseases, including CWD (15,16,22). The sensitivity of our molecular model for the detection of zoonotic conversion depends on the combination of 1) the action of proteinase K to degrade the abundant human PrPC that constitutes the substrate while only N terminally truncating any human PrPres produced and 2) the presence of the 3F4 epitope on human but not cervid PrP. In effect, this degree of sensitivity means that any human PrPres formed during the PMCA reaction can be detected down to the limit of Western blot sensitivity. In contrast, if other antibodies that detect both cervid and human PrP are used, such as 6H4, then newly formed human PrPres must be detected as a measurable increase in PrPres over the amount remaining in the reaction product from the cervid seed. Although best known for the efficient amplification of prions in research and diagnostic contexts, the variation of the PMCA method employed in our study is optimized for the definitive detection of zoonotic reaction products of inherently inefficient conversion reactions conducted across species barriers. By using this system, we previously made and reported the novel observation that elk CWD prions could convert human PrPC from human brain and could also convert recombinant human PrPC expressed in transgenic mice and eukaryotic cell cultures (15).


A previous publication suggested that mule deer PrPSc was unable to convert humanized transgenic substrate in PMCA assays (23) and required a further step of in vitro conditioning in deer substrate PMCA before it was able to cross the deer–human molecular barrier (24). However, prions from other species, such as elk (15) and reindeer affected by CWD, appear to be compatible with the human protein in a single round of amplification (as shown in our study). These observations suggest that different deer species affected by CWD could present differing degrees of the olecular compatibility with the normal form of human PrP.


The contribution of the polymorphism at codon 129 of the human PrP gene has been extensively studied and is recognized as a risk factor for Creutzfeldt-Jakob disease (4). In cervids, the equivalent codon corresponds to the position 132 encoding methionine or leucine. This polymorphism in the elk gene has been shown to play an important role in CWD susceptibility (25,26). We have investigated the effect of this cervid Prnp polymorphism on the conversion of the humanized transgenic substrate according to the variation in the equivalent PRNP codon 129 polymorphism. Interestingly, only the homologs methionine homozygous seed–substrate reactions could readily convert the human PrP, whereas the heterozygous elk PrPSc was unable to do so, even though comparable amounts of PrPres were used to seed the reaction. In addition, we observed only low levels of human PrPres formation in the reactions seeded with the homozygous methionine (132 MM) and the heterozygous (132 ML) seeds incubated with the other 2 human polymorphic substrates (129 MV and 129 VV). The presence of the amino acid leucine at position 132 of the elk Prnp gene has been attributed to a lower degree of prion conversion compared with methionine on the basis of experiments in mice made transgenic for these polymorphic variants (26). Considering the differences observed for the amplification of the homozygous human methionine substrate by the 2 polymorphic elk seeds (MM and ML), reappraisal of the susceptibility of human PrPC by the full range of cervid polymorphic variants affected by CWD would be warranted.


In light of the recent identification of the first cases of CWD in Europe in a free-ranging reindeer (R. tarandus) in Norway (2), we also decided to evaluate the in vitro conversion potential of CWD in 2 experimentally infected reindeer (18). Formation of human PrPres was readily detectable after a single round of PMCA, and in all 3 humanized polymorphic substrates (MM, MV, and VV). This finding suggests that CWD prions from reindeer could be more compatible with human PrPC generally and might therefore present a greater risk for zoonosis than, for example, CWD prions from white-tailed deer. A more comprehensive comparison of CWD in the affected species, coupled with the polymorphic variations in the human and deer PRNP–Prnp genes, in vivo and in vitro, will be required before firm conclusions can be drawn. Analysis of the Prnp sequence of the CWD reindeer in Norway was reported to be identical to the specimens used in our study (2). This finding raises the possibility of a direct comparison of zoonotic potential between CWD acquired in the wild and that produced in a controlled laboratory setting. (Table).


The prion hypothesis proposes that direct molecular interaction between PrPSc and PrPC is necessary for conversion and prion replication. Accordingly, polymorphic variants of the PrP of host and agent might play a role in determining compatibility and potential zoonotic risk. In this study, we have examined the capacity of the human PrPC to support in vitro conversion by elk, white-tailed deer, and reindeer CWD PrPSc. Our data confirm that elk CWD prions can convert the human PrPC, at least in vitro, and show that the homologous PRNP polymorphisms at codon 129 and 132 in humans and cervids affect conversion efficiency. Other species affected by CWD, particularly caribou or reindeer, also seem able to convert the human PrP. It will be important to determine whether other polymorphic variants found in other CWD-affected Cervidae or perhaps other factors (17) exert similar effects on the ability to convert human PrP and thus affect their zoonotic potential.


Dr. Barria is a research scientist working at the National CJD Research and Surveillance Unit, University of Edinburgh. His research has focused on understanding the molecular basis of a group of fatal neurologic disorders called prion diseases.


Acknowledgments We thank Aru Balachandran for originally providing cervid brain tissues, Abigail Diack and Jean Manson for providing mouse brain tissue, and James Ironside for his critical reading of the manuscript at an early stage.


This report is independent research commissioned and funded by the United Kingdom’s Department of Health Policy Research Programme and the Government of Scotland. The views expressed in this publication are those of the authors and not necessarily those of the Department of Health or the Government of Scotland.


Author contributions: The study was conceived and designed by M.A.B. and M.W.H. The experiments were conducted by M.A.B. and A.L. Chronic wasting disease brain specimens were provided by G.M. The manuscript was written by M.A.B. and M.W.H. All authors contributed to the editing and revision of the manuscript.


https://wwwnc.cdc.gov/eid/article/24/8/16-1888_article


https://www.ed.ac.uk/clinical-brain-sciences/news/news-jul-dec-2018/cwd-prions-human-conversion


Prion 2017 Conference Abstracts


First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 


Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 


University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 


This is a progress report of a project which started in 2009. 


21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. 


Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. 


At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 


PRION 2017 DECIPHERING NEURODEGENERATIVE DISORDERS ABSTRACTS REFERENCE


https://cjdfoundation.org/files/pdf/CWD%20study%20oral%20transmission%20of%20CWD%20to%20primates.pdf


https://www.cste2.org/Webinars/files/CWD_Slides_FINAL.pdf


8. Even though human TSE‐exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 


https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5132 


SATURDAY, FEBRUARY 23, 2019 


Chronic Wasting Disease CWD TSE Prion and THE FEAST 2003 CDC an updated review of the science 2019 


https://chronic-wasting-disease.blogspot.com/2019/02/chronic-wasting-disease-cwd-tse-prion.html 


TUESDAY, NOVEMBER 04, 2014 


Six-year follow-up of a point-source exposure to CWD contaminated venison in an Upstate New York community: risk behaviours and health outcomes 2005–2011 Authors, though, acknowledged the study was limited in geography and sample size and so it couldn't draw a conclusion about the risk to humans. They recommended more study. Dr. Ermias Belay was the report's principal author but he said New York and Oneida County officials are following the proper course by not launching a study. "There's really nothing to monitor presently. No one's sick," Belay said, noting the disease's incubation period in deer and elk is measured in years. " 


http://chronic-wasting-disease.blogspot.com/2014/11/six-year-follow-up-of-point-source.html


See CJD update at bottom…


Transmission Studies Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret. 


snip.... 


https://web.archive.org/web/20090506002237/http://www..bseinquiry.gov.uk/files/mb/m11b/tab01.pdf 


Prion Infectivity in Fat of Deer with Chronic Wasting Disease▿ 


Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species. 


http://jvi.asm.org/content/83/18/9608.full

 

Prions in Skeletal Muscles of Deer with Chronic Wasting Disease Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure. 


http://science.sciencemag.org/content/311/5764/1117..long


 *** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans” 


From: TSS Subject: CWD aka MAD DEER/ELK TO HUMANS ??? 


Date: September 30, 2002 at 7:06 am PST 


From: "Belay, Ermias" 


To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias" 


Sent: Monday, September 30, 2002 9:22 AM Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). 


Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated. 


Ermias Belay, M.D. Centers for Disease Control and Prevention 


-----Original Message----- From: 


Sent: Sunday, September 29, 2002 10:15 AM To: rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV 


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS 


Thursday, April 03, 2008 


A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ. 


snip... *** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***, 


snip... full text ; 


http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html


> However, to date, no CWD infections have been reported in people. 


sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven. if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way; 


sporadic = 54,983 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=sporadic 


spontaneous = 325,650 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=spontaneous 


key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. 


SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


> However, to date, no CWD infections have been reported in people.

key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***





*** now, let’s see what the authors said way back about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE. see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans” 


From: TSS Subject: CWD aka MAD DEER/ELK TO HUMANS ??? 


Date: September 30, 2002 at 7:06 am PST 


From: "Belay, Ermias" 


To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias" 


Sent: Monday, September 30, 2002 9:22 AM 


Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Dear Sir/Madam, In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). 


Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated. 


Ermias Belay, M.D. Centers for Disease Control and Prevention 


-----Original Message----- From: 


Sent: Sunday, September 29, 2002 10:15 AM To: rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV 


Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS 


Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS 


https://pubmed.ncbi.nlm.nih.gov/11594928/


> However, to date, no CWD infections have been reported in people. 


sporadic, spontaneous CJD, 85%+ of all human TSE, did not just happen. never in scientific literature has this been proven. if one looks up the word sporadic or spontaneous at pubmed, you will get a laundry list of disease that are classified in such a way; 


sporadic = 54,983 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=sporadic 


spontaneous = 325,650 hits 


https://www.ncbi.nlm.nih.gov/pubmed/?term=spontaneous 


key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. 


SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


> However, to date, no CWD infections have been reported in people.

key word here is ‘reported’. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can’t, and it’s as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it’s being misdiagnosed as sporadic CJD. …terry


*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***


*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).***


http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys


http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true


https://wwwnc.cdc.gov/eid/article/20/1/13-0858_article


CWD TSE PRION AND ZOONOTIC, ZOONOSIS, POTENTIAL


Subject: Re: DEER SPONGIFORM ENCEPHALOPATHY SURVEY & HOUND STUDY 


Date: Fri, 18 Oct 2002 23:12:22 +0100 


From: Steve Dealler 


Reply-To: Bovine Spongiform Encephalopathy Organization: Netscape Online member 


To: BSE-L@ References: 


Dear Terry,


An excellent piece of review as this literature is desperately difficult to get back from Government sites.


What happened with the deer was that an association between deer meat eating and sporadic CJD was found in about 1993. The evidence was not great but did not disappear after several years of asking CJD cases what they had eaten. I think that the work into deer disease largely stopped because it was not helpful to the UK industry...and no specific cases were reported. Well, if you dont look adequately like they are in USA currenly then you wont find any!


Steve Dealler 


=============== 


''The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).''


CREUTZFELDT JAKOB DISEASE SURVEILLANCE IN THE UNITED KINGDOM THIRD ANNUAL REPORT AUGUST 1994


Consumption of venison and veal was much less widespread among both cases and controls. For both of these meats there was evidence of a trend with increasing frequency of consumption being associated with increasing risk of CJD. (not nvCJD, but sporadic CJD...tss) These associations were largely unchanged when attention was restricted to pairs with data obtained from relatives. ...


Table 9 presents the results of an analysis of these data.


There is STRONG evidence of an association between ‘’regular’’ veal eating and risk of CJD (p = .0.01).


Individuals reported to eat veal on average at least once a year appear to be at 13 TIMES THE RISK of individuals who have never eaten veal.


There is, however, a very wide confidence interval around this estimate. There is no strong evidence that eating veal less than once per year is associated with increased risk of CJD (p = 0.51).


The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04).


There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).


The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).


snip...


It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).


snip...


In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...


snip...


In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)


snip...see full report ;


http://web.archive.org/web/20090506050043/http://www.bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf


2004 video


Jeff Swann and his Mom, cwd link... sporadic CJD?, CBC NEWS Jeff Schwan sCJD, CWD, and Professor Aguzzi on BSE and sporadic CJD 


????: CBCnews


https://histodb15.usz.ch/pages/Images/videos/video-004/video-004.html


1997 nvCJD video


https://histodb15.usz.ch/pages/Images/videos/video-009/video-009.html


RECENT MAD COW CASES

WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification

United States of America - Bovine spongiform encephalopathy - Immediate notification

GENERAL INFORMATION

COUNTRY/TERRITORY OR ZONE

COUNTRY/TERRITORY

ANIMAL TYPE

TERRESTRIAL

DISEASE CATEGORY

Listed disease

EVENT ID 5067

DISEASE Bovine spongiform encephalopathy

CAUSAL AGENT Bovine spongiform encephalopathy prion, atypical strain, L-type

GENOTYPE / SEROTYPE / SUBTYPE


Wednesday, May 24, 2023 

WAHIS, WOAH, OIE, United States of America Bovine spongiform encephalopathy Immediate notification

Singeltary full report and some history on mad cow in the usa.


May 2, 2023 Singeltary Submission to APHIS et al on BSE;

Docket No. APHIS–2023–0027 Notice of Request for Revision to and Extension of Approval of an Information Collection; National Veterinary Services Laboratories; Bovine Spongiform Encephalopathy Surveillance Program Singeltary Submission

Document APHIS-2023-0027-0001 BSE Singeltary Comment Submission

Greetings again APHIS et al,

I would kindly like to again, post my concern or urgency, on why said information is so critical, and why the 3 year extension is so critical, especially today, with the recent mad cow cases in the UK, Switzerland, Brazil, Spain, and The Netherlands all atypical BSE cases, and the fact the OIE is so concerned with the recent science about atypical L-type BSE and atypical H-type BSE, both of which can transmit orally, (see OIE BSE atypical in my reference materials), new outbreak of a new Prion disease in a new livestock species, i.e. the camel. The fact Chronic Wasted Disease CWD TSE Prion of Cervid, is spreading across the USA, with no stopping it in the near future, now with 10 different strains, a spillover into cattle or sheep would be devastating, and the ramifications of human zoonosis there from, has great concern throughout the scientific community. The fact that the USA BSE feed ban was and is a joke today (see why, with the fact that CWD positive deer could enter the food/feed chain for other ruminants and what the DEFRA says), how the BSE surveillance and testing has failed us so terribly bad to date, by testing only 25k bovines a year for BSE, you will not find BSE until it's too late, again. THIS is all why INFORMATION COLLECTION is so vital for BSE and all human and animal Transmissible Spongiform Encephalopathy TSE Prion disease.

''The purpose of this notice is to solicit comments from the public (as well as affected agencies) concerning our information collection. These comments will help us:''

(1) Evaluate whether the collection of information is necessary for the proper performance of the functions of the Agency, including whether the information will have practical utility;

(2) Evaluate the accuracy of our estimate of the burden of the collection of information, including the validity of the methodology and assumptions used;

(3) Enhance the quality, utility, and clarity of the information to be collected; and

(4) Minimize the burden of the collection of information on those who are to respond, through use, as appropriate, of automated, electronic, mechanical, and other collection technologies; ...end

The question should be, what will the burden be, if WE DON'T COLLECT SAID INFORMATIONS ON BSE, and we find ourselves again facing a BSE epidemic?

I want to bring your attention too, and emphasize;

(3) Enhance the quality, utility, and clarity of the information to be collected; and...

I remember that infamous TEXAS MAD COW that instead of a 48 turnaround at Weybridge, said suspect positive, was declared NEGATIVE, until an Act of Congress and the Honorable Phyllis Fong overrode Texas negative test, sent that BSE sample to Weybridge, and 6 MONTHS LATER ON A 48 HOUR TURNAROUND (BSE REDBOOKS), that BSE sample was CONFIRMED POSITIVE (see history in my references).

Let's not kid ourselves, the BSE ENHANCED BSE SURVEILLANE efforts way back was a total failure, that's why it was shut down, too many atypical BSE cases were showing up.

ONLY by the Grace of God, have we not had a documented BSE outbreak, that and the fact the USDA et al are only testing 25K cattle for BSE, a number too low to find mad cow disease from some 28.9 million beef cows in the United States as of Jan. 1, 2023, down 4% from last year. The number of milk cows in the United States increased to 9.40 million. U.S. calf crop was estimated at 34.5 million head, down 2% from 2021. Jan 31, 2023.

ALL it would take is one BSE positive, yet alone a handful of BSE cases, this is why the Enhanced BSE was shut down, and the BSE testing shut down to 25k, and the BSE GBRs were replaced with BSE MRRs, after the 2003 Christmas Mad cow, the cow that stole Christmas, making it legal to trade BSE, imo.

THE world was set back to square one with the BSE Minimal Risk Regions, from the BSE GBRs.

WE must enhance our BSE Surveillance and BSE Testing, and the FDA PART 589 TSE PRION FEED BAN must be revised to include Cervid by-products and SRM, and it should be made MANDATORY, AND THIS SHOULD BE WELL DOCUMENTED with information collection.

said 'burden' cost, will be a heavy burden to bear, if we fail with Bovine Spongiform Encephalopathy BSE TSE Prion disease, that is why this information collection is so critical...

Singeltary References


see full submission;


APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission June 17, 2019

APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087] Singeltary Submission

Greetings APHIS et al, 

I would kindly like to comment on APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], and my comments are as follows, with the latest peer review and transmission studies as references of evidence.

THE OIE/USDA BSE Minimal Risk Region MRR is nothing more than free pass to import and export the Transmissible Spongiform Encephalopathy TSE Prion disease. December 2003, when the USDA et al lost it's supposedly 'GOLD CARD' ie BSE FREE STATUS (that was based on nothing more than not looking and not finding BSE), once the USA lost it's gold card BSE Free status, the USDA OIE et al worked hard and fast to change the BSE Geographical Risk Statuses i.e. the BSE GBR's, and replaced it with the BSE MRR policy, the legal tool to trade mad cow type disease TSE Prion Globally. The USA is doing just what the UK did, when they shipped mad cow disease around the world, except with the BSE MRR policy, it's now legal. 

Also, the whole concept of the BSE MRR policy is based on a false pretense, that atypical BSE is not transmissible, and that only typical c-BSE is transmissible via feed. This notion that atypical BSE TSE Prion is an old age cow disease that is not infectious is absolutely false, there is NO science to show this, and on the contrary, we now know that atypical BSE will transmit by ORAL ROUTES, but even much more concerning now, recent science has shown that Chronic Wasting Disease CWD TSE Prion in deer and elk which is rampant with no stopping is sight in the USA, and Scrapie TSE Prion in sheep and goat, will transmit to PIGS by oral routes, this is our worst nightmare, showing even more risk factors for the USA FDA PART 589 TSE PRION FEED ban. 

The FDA PART 589 TSE PRION FEED ban has failed terribly bad, and is still failing, since August 1997. there is tonnage and tonnage of banned potential mad cow feed that went into commerce, and still is, with one decade, 10 YEARS, post August 1997 FDA PART 589 TSE PRION FEED ban, 2007, with 10,000,000 POUNDS, with REASON, Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement. you can see all these feed ban warning letters and tonnage of mad cow feed in commerce, year after year, that is not accessible on the internet anymore like it use to be, you can see history of the FDA failure August 1997 FDA PART 589 TSE PRION FEED ban here, but remember this, we have a new outbreak of TSE Prion disease in a new livestock species, the camel, and this too is very worrisome.

WITH the OIE and the USDA et al weakening the global TSE prion surveillance, by not classifying the atypical Scrapie as TSE Prion disease, and the notion that they want to do the same thing with typical scrapie and atypical BSE, it's just not scientific.

WE MUST abolish the BSE MRR policy, go back to the BSE GBR risk assessments by country, and enhance them to include all strains of TSE Prion disease in all species. With Chronic Wasting CWD TSE Prion disease spreading in Europe, now including, Norway, Finland, Sweden, also in Korea, Canada and the USA, and the TSE Prion in Camels, the fact the the USA is feeding potentially CWD, Scrapie, BSE, typical and atypical, to other animals, and shipping both this feed and or live animals or even grains around the globe, potentially exposed or infected with the TSE Prion. this APHIS Concurrence With OIE Risk Designation for Bovine Spongiform Encephalopathy [Docket No. APHIS-2018-0087], under it's present definition, does NOT show the true risk of the TSE Prion in any country. as i said, it's nothing more than a legal tool to trade the TSE Prion around the globe, nothing but ink on paper.

AS long as the BSE MRR policy stays in effect, TSE Prion disease will continued to be bought and sold as food for both humans and animals around the globe, and the future ramifications from friendly fire there from, i.e. iatrogenic exposure and transmission there from from all of the above, should not be underestimated. ...



WOAH OIE REPORT BSE UNITED STATEDS


REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Virtual, 1–11 February 2021 

iv) Chronic wasting disease

The Commission considered the request by the Code Commission for clarification on the rationale for the Commission’s opinion that CWD did not fulfil the criteria for listing, specifically for point 2 of Article 1.2.26 of the Terrestrial Code. The Commission explained that the opinion was based on an extensive consultation process that took into account the opinions of the ad hoc Group on BSE, the Working Group on Wildlife and several subject-matter expert consultations. Based on this extensive consultation, the Commission indicated that the low disease prevalence, the impractical nature of currently available diagnostic tests, and the limited number of control measures make it difficult to eliminate the disease or scientifically provide evidence to demonstrate either freedom or impending freedom. The Commission considered also that despite the implementation of surveillance programmes by some Members, no country can currently demonstrate either freedom or impending freedom from disease. 


Annex 19

WORK PROGRAMME OF THE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES (FEB 2021)

Define a procedure for the evaluation of diseases against the listing criteria of Chapter 1.2., and responding to requests for listing decisions

Evaluated proposals for (de)listing of:

• M. tuberculosis • Infestation of honey bees with Acarapis woodi • Infestation of honey bees with Tropilaelaps spp. 

• Chronic wasting disease 

• Atypical BSE


6.8. Bovine spongiform encephalopathy (Chapter 11.4.), Application for official recognition by the OIE of risk status for bovine spongiform encephalopathy (Chapter 1.8.) and Glossary definition for ‘protein meal’

Background 

In February 2018, following preliminary work and scientific exchanges, the Code Commission and the Scientific Commission agreed to an in-depth review of Chapter 11.4. Bovine spongiform encephalopathy (BSE). The OIE convened three different ad hoc Groups between July 2018 and March 2019: i) an ad hoc Group on BSE risk assessment, which met twice, ii) an ad hoc Group on BSE surveillance, which met once, and iii) a joint ad hoc Group on BSE risk assessment and surveillance, which met once. The Code Commission, at its September 2019 meeting, reviewed the four ad hoc Group reports and the opinion of the Scientific Commission regarding the draft revised chapter and circulated a revised draft Chapter 11.4. for comments. In February 2020, the Code Commission considered comments received on the revised draft Chapter 11.4. and requested that the joint ad hoc Group on BSE risk assessment and surveillance be reconvened to address comments of a technical nature. In June 2020, the joint ad hoc Group was convened to address relevant comments and was also requested to review Chapter 1.8. Application for official recognition by the OIE of risk status for bovine spongiform encephalopathy to ensure alignment with the proposed changes in Chapter 11.4.

In September 2020, the Code Commission reviewed the joint ad hoc Group report and the revised draft Chapters 11.4. and 1.8. and made some additional amendments and circulated the revised chapters for comments in its September 2020 report. In February 2021, the Commission considered comments received and amended the chapters, as appropriate, and circulated the revised chapters for a third round of comments. In preparation for the September 2021 meetings, some members of the Code Commission and the Scientific Commission met to discuss key aspects of the revision of Chapters 11.4. and 1.8. to ensure a common understanding of the main concerns raised by Members, the decisions made on the revised chapters and their impact on the official status recognition, as well as on the adapted procedures that will be required. During this meeting, it was agreed that each Commission would address the issues relevant to its meeting and document discussions in their respective reports. 

Discussion 

SNIP...SEE FULL TEXT; 


OIE Conclusions on transmissibility of atypical BSE among cattle

Given that cattle have been successfully infected by the oral route, at least for L-BSE, it is reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle are exposed to contaminated feed. In addition, based on reports of atypical BSE from several countries that have not had C-BSE, it appears likely that atypical BSE would arise as a spontaneous disease in any country, albeit at a very low incidence in old cattle. In the presence of livestock industry practices that would allow it to be recycled in the cattle feed chain, it is likely that some level of exposure and transmission may occur. As a result, since atypical BSE can be reasonably considered to pose a potential background level of risk for any country with cattle, the recycling of both classical and atypical strains in the cattle and broader ruminant populations should be avoided. 


Annex 7 (contd) AHG on BSE risk assessment and surveillance/March 2019

34 Scientific Commission/September 2019

3. Atypical BSE

The Group discussed and endorsed with minor revisions an overview of relevant literature on the risk of atypical BSE being recycled in a cattle population and its zoonotic potential that had been prepared ahead of the meeting by one expert from the Group. This overview is provided as Appendix IV and its main conclusions are outlined below. With regard to the risk of recycling of atypical BSE, recently published research confirmed that the L-type BSE prion (a type of atypical BSE prion) may be orally transmitted to calves1 . In light of this evidence, and the likelihood that atypical BSE could arise as a spontaneous disease in any country, albeit at a very low incidence, the Group was of the opinion that it would be reasonable to conclude that atypical BSE is potentially capable of being recycled in a cattle population if cattle were to be exposed to contaminated feed. Therefore, the recycling of atypical strains in cattle and broader ruminant populations should be avoided.

The Group acknowledged the challenges in demonstrating the zoonotic transmission of atypical strains of BSE in natural exposure scenarios. Overall, the Group was of the opinion that, at this stage, it would be premature to reach a conclusion other than that atypical BSE poses a potential zoonotic risk that may be different between atypical strains.

4. Definitions of meat-and-bone meal (MBM) and greaves

snip...

REFERENCES

SNIP...END SEE FULL TEXT;


ATYPICAL BSE

The L-type BSE prion is much more virulent in primates and in humanized mice than is the classical BSE prion, which suggests the possibility of zoonotic risk associated with the L-type BSE prion


Consumption of L-BSE–contaminated feed may pose a risk for oral transmission of the disease agent to cattle.


Thus, it is imperative to maintain measures that prevent the entry of tissues from cattle possibly infected with the agent of L-BSE into the food chain.


Atypical L-type bovine spongiform encephalopathy (L-BSE) transmission to cynomolgus macaques, a non-human primate

Fumiko Ono 1, Naomi Tase, Asuka Kurosawa, Akio Hiyaoka, Atsushi Ohyama, Yukio Tezuka, Naomi Wada, Yuko Sato, Minoru Tobiume, Ken'ichi Hagiwara, Yoshio Yamakawa, Keiji Terao, Tetsutaro Sata

Affiliations expand

PMID: 21266763

Abstract

A low molecular weight type of atypical bovine spongiform encephalopathy (L-BSE) was transmitted to two cynomolgus macaques by intracerebral inoculation of a brain homogenate of cattle with atypical BSE detected in Japan. They developed neurological signs and symptoms at 19 or 20 months post-inoculation and were euthanized 6 months after the onset of total paralysis. Both the incubation period and duration of the disease were shorter than those for experimental transmission of classical BSE (C-BSE) into macaques. Although the clinical manifestations, such as tremor, myoclonic jerking, and paralysis, were similar to those induced upon C-BSE transmission, no premonitory symptoms, such as hyperekplexia and depression, were evident. Most of the abnormal prion protein (PrP(Sc)) was confined to the tissues of the central nervous system, as determined by immunohistochemistry and Western blotting. The PrP(Sc) glycoform that accumulated in the monkey brain showed a similar profile to that of L-BSE and consistent with that in the cattle brain used as the inoculant. PrP(Sc) staining in the cerebral cortex showed a diffuse synaptic pattern by immunohistochemistry, whereas it accumulated as fine and coarse granules and/or small plaques in the cerebellar cortex and brain stem. Severe spongiosis spread widely in the cerebral cortex, whereas florid plaques, a hallmark of variant Creutzfeldt-Jakob disease in humans, were observed in macaques inoculated with C-BSE but not in those inoculated with L-BSE.


see full text;


''H-TYPE BSE AGENT IS TRANSMISSIBLE BY THE ORONASAL ROUTE''

This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***

Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 

PRION 2015 CONFERENCE


***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 


Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 


SO, WHO'S UP FOR SOME MORE TSE PRION POKER, WHO'S ALL IN $$$ 

SO, ATYPICAL SCRAPIE ROUGHLY HAS 50 50 CHANCE ATYPICAL SCRAPIE IS CONTAGIOUS, AS NON-CONTAGIOUS, TAKE YOUR PICK, BUT I SAID IT LONG AGO WHEN USDA OIE ET AL MADE ATYPICAL SCRAPIE A LEGAL TRADING COMMODITY, I SAID YOUR PUTTING THE CART BEFORE THE HORSE, AND THAT'S EXACTLY WHAT THEY DID, and it's called in Texas, TEXAS TSE PRION HOLDEM POKER, WHO'S ALL IN $$$

***> AS is considered more likely (subjective probability range 50–66%) that AS is a non-contagious, rather than a contagious, disease.

SNIP...SEE;

THURSDAY, JULY 8, 2021 

EFSA Scientific report on the analysis of the 2‐year compulsory intensified monitoring of atypical scrapie




PAST US MAD COW CASES AND TRACEABILITY PROBLEMS, WHAT'S IT GOING TO TAKE?

 AUG. 11, 2017

***>Assuming no other factors influenced the levels of correct diagnosis and that the numbers estimated for 1997 to 1999 were a true representation of the potential under-diagnosis of the entire epidemic up until 1999, then the total number of missed cases positive for BSE could have been in the region of 5,500.

***>As a result, using more sensitive diagnostic assays, we were able to diagnose BSE positive cattle from the years 1997-1999 inclusive that were originally negative by vacuolation. From these data we have estimated that approximately 3% of the total suspect cases submitted up until the year 1999 were mis-diagnosed. 

YOU know, Confucius is confused again LOL, i seem to have remembered something in line with this here in the USA...

USDA did not test possible mad cows

By Steve Mitchell

United Press International

Published 6/8/2004 9:30 PM

WASHINGTON, June 8 (UPI) -- The U.S. Department of Agriculture claims ittested 500 cows with signs of a brain disorder for mad cow disease last year, but agency documents obtained by United Press International show the agency tested only half that number.



"These 9,200 cases were different because brain tissue samples were preserved with formalin, which makes them suitable for only one type of test--immunohistochemistry, or IHC."

THIS WAS DONE FOR A REASON!

THE IHC test has been proven to be the LEAST LIKELY to detect BSE/TSE in the bovine, and these were probably from the most high risk cattle pool, the ones the USDA et al, SHOULD have been testing. ...TSS

TEXAS 2ND MAD COW THAT WAS COVERED UP, AFTER AN ACT OF CONGRESS, AND CALLS FROM TSE PRION SCIENTIST AROUND THE GLOBE, THIS 2ND MAD COW IN TEXAS WAS CONFIRMED

THE USDA MAD COW FOLLIES POSITIVE TEST COVER UP

JOHANNS SECRET POSTIVE MAD COW TEST THAT WERE IGNORED

OIG AND THE HONORABLE FONG CONFIRMS TEXAS MAD AFTER AN ACT OF CONGRESS 7 MONTHS LATER

TEXAS MAD COW

THEY DID FINALLY TEST AFTER SITTING 7+ MONTHS ON A SHELF WHILE GW BORE THE BSE MRR POLICY, i.e. legal trading of all strains of TSE. now understand, i confirmed this case 7 months earlier to the TAHC, and then, only after i contacted the Honorable Phyllis Fong and after an act of Congress, this animal was finally confirmed ;

During the course of the investigation, USDA removed and tested a total of 67 animals of interest from the farm where the index animal's herd originated. All of these animals tested negative for BSE. 200 adult animals of interest were determined to have left the index farm. Of these 200, APHIS officials determined that 143 had gone to slaughter, two were found alive (one was determined not to be of interest because of its age and the other tested negative), 34 are presumed dead, one is known dead and 20 have been classified as untraceable. In addition to the adult animals, APHIS was looking for two calves born to the index animal. Due to record keeping and identification issues, APHIS had to trace 213 calves. Of these 213 calves, 208 entered feeding and slaughter channels, four are presumed to have entered feeding and slaughter channels and one calf was untraceable.


NEW URL LINK;


Executive Summary In June 2005, an inconclusive bovine spongiform encephalopathy (BSE) sample from November 2004, that had originally been classified as negative on the immunohistochemistry test, was confirmed positive on SAF immunoblot (Western blot). The U.S. Department of Agriculture (USDA) identified the herd of origin for the index cow in Texas; that identification was confirmed by DNA analysis. USDA, in close cooperation with the Texas Animal Health Commission (TAHC), established an incident command post (ICP) and began response activities according to USDA’s BSE Response Plan of September 2004. Response personnel removed at-risk cattle and cattle of interest (COI) from the index herd, euthanized them, and tested them for BSE; all were negative. USDA and the State extensively traced all at-risk cattle and COI that left the index herd. The majority of these animals entered rendering and/or slaughter channels well before the investigation began. USDA’s response to the Texas finding was thorough and effective.

snip...

Trace Herd 3 The owner of Trace Herd 3 was identified as possibly having received an animal of interest. The herd was placed under hold order on 7/27/05. The herd inventory was conducted on 7/28/05. The animal of interest was not present within the herd, and the hold order was released on 7/28/05. The person who thought he sold the animal to the owner of Trace Herd 3 had no records and could not remember who else he might have sold the cow to. Additionally, a search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. The animal of interest traced to this herd was classified as untraceable because all leads were exhausted.

Trace Herd 4 The owner of Trace Herd 4 was identified as having received one of the COI through an order buyer. Trace Herd 4 was placed under hold order on 7/29/05. A complete herd inventory was conducted on 8/22/05 and 8/23/05. There were 233 head of cattle that were examined individually by both State and Federal personnel for all man-made identification and brands. The animal of interest was not present within the herd. Several animals were reported to have died in the herd sometime after they arrived on the premises in April 2005. A final search of GDB records yielded no further results on the eartag of interest at either subsequent market sale or slaughter. With all leads having been exhausted, this animal of interest has been classified as untraceable. The hold order on Trace Herd 4 was released on 8/23/05.

Trace Herd 5 The owner of Trace Herd 5 was identified as having received two COI and was placed under hold order on 8/1/05. Trace Herd 5 is made up of 67 head of cattle in multiple pastures. During the course of the herd inventory, the owner located records that indicated that one of the COI, a known birth cohort, had been sold to Trace Herd 8 where she was subsequently found alive. Upon completion of the herd inventory, the other animal of interest was not found within the herd. A GDB search of all recorded herd tests conducted on Trace Herd 5 and all market sales by the owner failed to locate the identification tag of the animal of interest and she was subsequently classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 5 was released on 8/8/05.

Trace Herd 6 The owner of Trace Herd 6 was identified as possibly having received an animal of interest and was placed under hold order on 8/1/05. This herd is made up of 58 head of cattle on two pastures. A herd inventory was conducted and the animal of interest was not present within the herd. The owner of Trace Herd 6 had very limited records and was unable to provide further information on where the cow might have gone after he purchased her from the livestock market. A search of GDB for all cattle sold through the markets by that individual did not result in a match to the animal of interest. Additionally, many of the animals presented for sale by the owner of the herd had been re-tagged at the market effectually losing the traceability of the history of that animal prior to re-tagging. The animal of interest traced to this herd was classified as untraceable due to all leads having been exhausted. The hold order on Trace Herd 6 was released on 8/3/05.

Trace Herd 7 The owner of Trace Herd 7 was identified as having received an animal of interest and was placed under hold order on 8/1/05. Trace Herd 7 contains 487 head of cattle on multiple pastures in multiple parts of the State, including a unit kept on an island. The island location is a particularly rough place to keep cattle and the owner claimed to have lost 22 head on the island in 2004 due to liver flukes. Upon completion of the herd inventory, the animal of interest was not found present within Trace Herd 7. A GDB search of all recorded herd tests conducted on Trace Herd 7 and all market sales by the owner failed to locate the identification tag of the animal of interest. The cow was subsequently classified as untraceable. It is quite possible though that she may have died within the herd, especially if she belonged to the island unit. The hold order on Trace Herd 7 was released on 8/8/05.


NEW URL LINK;


Owner and Corporation Plead Guilty to Defrauding Bovine Spongiform Encephalopathy (BSE) Surveillance Program

An Arizona meat processing company and its owner pled guilty in February 2007 to charges of theft of Government funds, mail fraud, and wire fraud. The owner and his company defrauded the BSE Surveillance Program when they falsified BSE Surveillance Data Collection Forms and then submitted payment requests to USDA for the services. In addition to the targeted sample population (those cattle that were more than 30 months old or had other risk factors for BSE), the owner submitted to USDA, or caused to be submitted, BSE obex (brain stem) samples from healthy USDA-inspected cattle. As a result, the owner fraudulently received approximately $390,000. Sentencing is scheduled for May 2007.

snip...

4 USDA OIG SEMIANNUAL REPORT TO CONGRESS FY 2007 1st Half


NEW URL LINK;


Audit Report Animal and Plant Health Inspection Service Bovine Spongiform Encephalopathy (BSE) Surveillance Program – Phase II and Food Safety and Inspection Service Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III

UNITED STATES DEPARTMENT OF AGRICULTURE OFFICE OF INSPECTOR GENERAL Washington, D.C. 20250 January 25, 2006 REPLY TO ATTN OF: 50601-10-KC TO: W. Ron DeHaven Administrator Animal and Plant Health Inspection Service Barbara Masters Administrator Food Safety and Inspection Service ATTN: William J. Hudnall Deputy Administrator Marketing Regulatory Program Business Services William C. Smith Assistant Administrator Office of Program Evaluation, Enforcement, and Review FROM: Robert W. Young /s/ Assistant Inspector General for Audit SUBJECT: Animal and Plant Health Inspection Service - Bovine Spongiform Encephalopathy (BSE) Surveillance Program - Phase II and Food Safety and Inspection Service - Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III This report presents the results of our audit of the enhanced BSE surveillance program and controls over specified risk materials and advanced meat recovery products. Your written response to the official draft report, dated January 20, 2006, is included as exhibit G with excerpts of the response and the Office of Inspector General’s (OIG) position incorporated into the Findings and Recommendations section of the report, where applicable. We accept the management decisions for all recommendations. Please follow your agency’s internal procedures in forwarding documentation for final action to the Office of the Chief Financial Officer (OCFO). We are providing a separate memorandum to the agencies and OCFO that provides specific information on the actions to be completed to achieve final action. We appreciate your timely response and the cooperation and assistance provided to our staff during the audit USDA/OIG-A/50601-10-KC/ Page i

Executive Summary

Animal and Plant Health Inspection Service - Bovine Spongiform Encephalopathy (BSE) Surveillance Program - Phase II and Food Safety and Inspection Service - Controls Over BSE Sampling, Specified Risk Materials, and Advanced Meat Recovery Products - Phase III

Results in Brief This report evaluates elements of the interlocking safeguards in place to protect United States (U.S.) beef from Bovine Spongiform Encephalopathy, widely known as BSE or "mad cow disease." Since 1990, the U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), has led a multi-agency effort to monitor and prevent BSE from entering the food supply. After discovering a BSE-positive cow in December 2003, APHIS expanded its BSE surveillance program. To further protect the food supply, USDA banned materials identified as being at risk of carrying BSE (specified risk materials (SRM)), such as central nervous system tissue. As part of this effort, USDA’s Food Safety and Inspection Service (FSIS) required beef slaughter and processing facilities to incorporate controls for handling such materials into their operational plans. Onsite FSIS inspectors also inspect cattle for clinical signs in order to prevent diseased animals from being slaughtered for human consumption. To evaluate the effectiveness of the safeguards, we assessed APHIS’ implementation of the expanded surveillance program, as well as FSIS’ controls to prevent banned SRMs from entering the food supply.

In June 2004, APHIS implemented its expanded surveillance program; participation by industry in this surveillance program is voluntary. As of May 2005, over 350,000 animals were sampled and tested for BSE. To date, two animals tested positive for BSE; one tested positive after implementation of the expanded surveillance program.

USDA made significant efforts to implement the expanded BSE surveillance program. Much needed to be done in a short period of time to establish the necessary processes, controls, infrastructure, and networks to assist in this effort. In addition, extensive outreach and coordination was undertaken with other Federal, State, and local entities, private industry, and laboratory and veterinary networks. This report provides an assessment as to the progress USDA made in expanding its surveillance effort and the effectiveness of its controls and processes. This report also discusses the limitations of its program and data in assessing the prevalence of BSE in the U.S. herd.

snip...

40 ELISA test procedures require two additional (duplicate) tests if the initial test is reactive, before final interpretation. If either of the duplicate tests is reactive, the test is deemed inconclusive.

41 Protocol for BSE Contract Laboratories to Receive and Test Bovine Brain Samples and Report Results for BSE Surveillance Standard Operating Procedure (SOP), dated October 26, 2004.

42 The NVSL conducted an ELISA test on the original material tested at the contract laboratory and on two new cuts from the sample tissue.

43 A visual examination of brain tissue by a microscope.

44 A localized pathological change in a bodily organ or tissue.

SNIP...

PLEASE SEE FLAMING EVIDENCE THAT THE USDA ET AL COVERED UP MAD COW DISEASE IN TEXAS ;

PAGE 43;

Section 2. Testing Protocols and Quality Assurance Controls

snip...

FULL TEXT 130 PAGES


NEW URL LINK;


Comments on technical aspects of the risk assessment were then submitted to FSIS.

Comments were received from Food and Water Watch, Food Animal Concerns Trust (FACT), Farm Sanctuary, R-CALF USA, Linda A Detwiler, and Terry S. Singeltary.

This document provides itemized replies to the public comments received on the 2005 updated Harvard BSE risk assessment. Please bear the following points in mind:


NEW URL LINK;


Owens, Julie From: Terry S. Singeltary Sr. [flounder9@verizon.net]

Sent: Monday, July 24, 2006 1:09 PM To: FSIS RegulationsComments

Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE) Page 1 of 98 8/3/2006

Greetings FSIS, I would kindly like to comment on the following ;


NEW URL LINK;


Suppressed peer review of Harvard study October 31, 2002.

October 31, 2002 Review of the Evaluation of the Potential for Bovine Spongiform Encephalopathy in the United States Conducted by the Harvard Center for Risk Analysis, Harvard School of Public Health and Center for Computational Epidemiology, College of Veterinary Medicine, Tuskegee University Final Report Prepared for U.S. Department of Agriculture Food Safety and Inspection Service Office of Public Health and Science Prepared by RTI Health, Social, and Economics Research Research Triangle Park, NC 27709 RTI Project Number 07182.024


NEW URL LINK;


Sunday, February 14, 2010

[Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine Spongiform Encephalopathy (BSE)


snip...SEE FULL TEXT;

BSE research project final report 2005 to 2008 SE1796 SID5


TUESDAY, MAY 31, 2022 

USA Bovine Spongiform Encephalopathy BSE: description of typical and atypical cases 


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


TUESDAY, SEPTEMBER 13, 2022 

BSE pathogenesis in the ileal Peyer’s patches and the central and peripheral nervous system of young cattle 8 months post oral BSE challenge


TUESDAY, SEPTEMBER 07, 2021

Atypical Bovine Spongiform Encephalopathy BSE OIE, FDA 589.2001 FEED REGULATIONS, and Ingestion Therefrom


Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA


WEDNESDAY, JANUARY 12, 2022 

Bovine Spongiform Encephalopathy BSE TSE Prion Origin USA, what if?


PLOS ONE Journal 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;


IBNC Tauopathy or TSE Prion disease, it appears, no one is sure 

Terry S. Singeltary Sr., 03 Jul 2015 at 16:53 GMT

***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***


MONDAY, SEPTEMBER 19, 2022 

589.2001 BSE TSE regulations which prohibits the use of high-risk cattle material in feed for all animal species 2022


SATURDAY, SEPTEMBER 24, 2022 

Transmission of CH1641 in cattle 


FRIDAY, APRIL 1, 2022 

USDA TAKES THE C OUT OF COOL, what's up with that?


MONDAY, JUNE 6, 2022 

APHIS USDA History Highlight: APHIS Combats Bovine Spongiform Encephalopathy Published Jun 1, 2022


MONDAY, NOVEMBER 30, 2020 

***> REPORT OF THE MEETING OF THE OIE SCIENTIFIC COMMISSION FOR ANIMAL DISEASES Paris, 9–13 September 2019 BSE, TSE, PRION

see updated concerns with atypical BSE from feed and zoonosis...terry


WEDNESDAY, DECEMBER 8, 2021 

Importation of Sheep, Goats, and Certain Other Ruminants AGENCY: Animal APHIA, USDA, FINAL RULE [Docket No. APHIS–2009–0095] RIN 0579–AD10 


WEDNESDAY, MARCH 24, 2021 

USDA Animal and Plant Health Inspection Service 2020 IMPACT REPORT BSE TSE Prion Testing and Surveillance MIA 


SUNDAY, MARCH 21, 2021 

Investigation Results of Texas Cow That Tested Positive for Bovine Spongiform Encephalopathy (BSE) Aug. 30, 2005 Singeltary's Regiew 2021 


THURSDAY, AUGUST 20, 2020 

Why is USDA "only" BSE TSE Prion testing 25,000 samples a year? 


THURSDAY, JANUARY 23, 2020

USDA Consolidates Regulations for NAHLN Laboratory Testing USDA Animal and Plant Health Inspection Service 

sent this bulletin at 01/23/2020 02:15 PM EST


WEDNESDAY, APRIL 24, 2019 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection Aug 29, 2018 A Review of Science 2019


Saturday, July 23, 2016

BOVINE SPONGIFORM ENCEPHALOPATHY BSE TSE PRION SURVEILLANCE, TESTING, AND SRM REMOVAL UNITED STATE OF AMERICA UPDATE JULY 2016


Tuesday, July 26, 2016

Atypical Bovine Spongiform Encephalopathy BSE TSE Prion UPDATE JULY 2016


Monday, June 20, 2016

Specified Risk Materials SRMs BSE TSE Prion Program


*** PLEASE SEE THIS URGENT UPDATE ON CWD AND FEED ANIMAL PROTEIN ***

Sunday, March 20, 2016

Docket No. FDA-2003-D-0432 (formerly 03D-0186) Use of Material from Deer and Elk in Animal Feed ***UPDATED MARCH 2016*** Singeltary Submission


SEE MAD COW FEED VIOLATIONS AFER MAD COW FEED VIOLATIONS ;


Tuesday, April 19, 2016

Docket No. FDA-2013-N-0764 for Animal Feed Regulatory Program Standards Singeltary Comment Submission


BSE REDBOOK

Preliminary Notification

The director of NVSL is responsible for immediately notifying the APHIS, Veterinary Services (VS) deputy administrator when tests suggest a presumptive diagnosis of BSE. Once NVSL has made a presumptive diagnosis of BSE, APHIS and FSIS field activities will also be initiated. APHIS will receive notification (either confirming or not confirming NVSL's diagnosis) from the United Kingdom anywhere between 24 and 96 hours. (The international animal health community has recognized the United Kingdom's Central Veterinary Laboratory {CVL} as the world's reference laboratory for diagnosing BSE. Other countries, including Belgium, France, Ireland, Luxembourg, the Netherlands, Portugal, and Switzerland, have all sent samples to this lab to confirm their first case of BSE).

snip...

BSE Response Team

The BSE Response Team will complete the informational memorandum for the Secretary. The Team will prepare the letter to the Office of International Epizootics (OIE), the international animal health organization, for signature by the APHIS, VS Deputy Administrator. OIE requires that all countries submit official notification within 24 hours of confirming a diagnosis of BSE. The BSE Response Team and the office of the APHIS, VS Deputy Administrator would coordinate a teleconference to inform all APHIS regional directors and AVIC'S. The BSE Response Team and the office of the FSIS, OPHS Deputy Administrator would coordinate a teleconference to inform all regional and field FSIS offices. The BSE Response Team would coordinate a teleconference to notify other Federal agencies. The BSE Response Team would coordinate a teleconference to notify key industry/consumer representatives. The BSE Response Team and APHIS International Services would notify foreign embassies. The BSE Response Team would establish a toll-free 800 telephone line for industry representatives, reporters, and the public. The BSE Response Team would coordinate with APHIS Legislative and Public Affairs and USDA office of Communications to issue a press release the day the diagnosis is confirmed. The press release would announce a press conference to be held the morning after the diagnosis is confirmed......

THE END

From: Terry S. Singeltary Sr. (216-119-138-126.ipset18.wt.net) 
Subject: Hunkering down in the APHIS BSE Situation Room... 
Date: February 14, 2000 at 9:04 am PST

Subject: hunkering down in the APHIS BSE Situation Room 
Date: Wed, 12 May 1999 01:55:54 -0800 
From: tom Reply-To: Bovine Spongiform Encephalopathy 
To: BSE-L@uni-karlsruhe.de

i am looking now a bizarre Oct 98 internal USDA publication describing a james bond-type US effort to control media should the long-anticipated first case of BSE in the US be admitted.

'Players' on the 27 member BSE Response Team are to be flown in from all over the country to a BSE Headquarters 'situation room' apparently an underground bunker in Riverdale, Maryland under the command of the Assistant Secretary of Marketing.

Authentic press releases are already prepared and ready to go out after a few specifics have been filled in. They are spelled out in a separate document, the BSE Red Book, aka BSE Emergency Disease Guidelines.

Aphis' National Veterinary Services Laboratories (NVSL) activates team assembly. From the time a bovine brain sample is submitted, it takes 14-18 days to confirm a diagnosis of BSE. In the first 10-13 days, NVSL have enough information to determine the need for additional tests. If a provisional BSE diagnosis is made, the sample is 'hand-carried' (are they going to tell the airline and customs?) to the Central Veterinary Laboratory in England for confirmation, where they are expecting a 24 to 96 hour turn-around.

I guess that means we can get the white tiger brain analyzed by Friday despite the 22 year delay to date. Maybe we could throw in a few cougar brains from NE Colorado too.

A Team Member is designated to silently monitor this listserve and www.mad-cow.org (among others) -- for what, it doesn't say. The Freedom of Information Act request from the East Coast consumer group turned up numerous top-secret USDA downloads from that site and Dealler's.

After 24 hours of secret briefings for 'select industry and trading partners' (to allow them to take positions on the commodities markets opposite the 'non-select' industry and trading partners?), a press conference will be held the next day.

There are plans to trace the cow, its lineage, its herdmates, the renderer, traceout of product, buyout of herd, farm of origin, to get the state involved to quarantine the herd (pre-arranged for all 50 states), expectations for trade bans, notification of OIE within 24 hours, media 800 numbers, spokespersons and backups, notify CDC, FDA, NIH, and many other commendable activities. The Flow Chart is a sight to behold, I will try to scan it in tomorrow.

In short, that cow is going to be toast by the time the public first hears about it.

The Plan does not speak to the scenario in which the CVL says, yes, this is bovine spongiform encephalopathy all right but it is one of your strains, not ours. Invoking their Absence of Evidence is Evidence of Absence principle, there may be no perceived need for public disclosure in this case.

USDA is caught completely unprepared if BSE first turns up in a US zoo animal. These animals could easily be diagnosed outside the "system" and be the subject of a publicity-seeking lab press release. I think this is a more likely scenario because the US has likely imported many thousands of zoo animals with advanced infections from Britain and France and there has been zero monitoring. Unlike with downer cows, anyone with the right colleagues can get ahold of a fallen zoo animal. Zoo animals enter the food chain in some cases after being rendered.

Another scenario would be some stock market speculator obtaining the Red Book and issuing a flurry of bogus but authentic-looking press releases that included bogus 800 and hacked USDA web links. The press here is so lazy and so accustomed to putting out public relation handouts as news that the objectives would be accomplished for a few hour (or days, depending on the Response Team's paralysis vis-a-vis off-flow chart events). Some people think a practise run for this happened in the Indiana case a year or two back.

The first case of nvCJD in an American will also be a public relations fiasco. In the dim bulb of the public mind, any American with mad cow disease would have gotten it from eating meat here. USDA has no way to prove that the victim acquired it on a three week trip to England in 1987. This will sound lame even to the press. All CJD is synonymous with mad cow disease in the public perception; the more often the different kinds are explained, the more their suspicions are aroused. The first case of nvCJD in an American will simply validate what they already know and just be viewed as an overdue admission from the government.

tom

___________________________________________________________

From: Terry S. Singeltary Sr. (216-119-130-102.ipset10.wt.net) 
Subject: When a case of B.S.E. is found in the U.S/Response to Disease outbreak...'redbook' 
Date: March 13, 2000 at 10:13 am PST

BSE Red Book 2.1-26

5.0 Response to Disease Outbreak

snip...see full report of From: Terry S. Singeltary Sr. (216-119-130-102.ipset10.wt.net) Subject: When a case of B.S.E. is found in the U.S/Response to Disease outbreak...'redbook' Date: March 13, 2000 at 10:13 am PST


Thursday, April 6, 2023 

WOAH OIE CHAPTER 11.4 . BOVINE SPONGIFORM ENCEPHALOPATHY Article 11.4.1. 


2023

The risk of CJD increases with age; the 2016–2020 average annual rate in the United States was about 5 cases per million in persons 55 years of age or older.


Singeltary 1999

US scientists develop a possible test for BSE

BMJ 1999; 319 doi: https://doi.org/10.1136/bmj.319.7220.1312b (Published 13 November 1999)

Cite this as: BMJ 1999;319:1312

15 November 1999

Terry S Singeltary

NA

medically retired

Rapid Response:

Re: vCJD in the USA * BSE in U.S.

In reading the recent article in the BMJ about the potential BSE tests being developed in the U.S. and Bart Van Everbroeck reply. It does not surprize me, that the U.S. has been concealing vCJD. There have been people dying from CJD, with all the symptoms and pathological findings that resemble U.K. vCJD for some time. It just seems that when there is one found, they seem to change the clarical classification of the disease, to fit their agenda. I have several autopsies, stating kuru type amyloid plaques, one of the victims was 41 years of age. Also, my Mom died a most hideous death, Heidenhain Variant Creutzfeldt Jakob disease.

Her symptoms resemble that of all the U.K. vCJD victims. She would jerk so bad at times, it would take 3 of us to hold her down, while she screamed "God, what's wrong with me, why can't I stop this." 1st of symptoms to death, 10 weeks, she went blind in the first few weeks. But, then they told me that this was just another strain of sporadic CJD. They can call it what ever they want, but I know what I saw, and what she went through. Sporadic, simply means, they do not know.

My neighbors Mom also died from CJD. She had been taking a nutritional supplement which contained the following;

vacuum dried bovine BRAIN, bone meal, bovine EYE, veal bone, bovine liver powder, bovine adrenal, vacuum dried bovine kidney, and vacuum dried porcine stomach. As I said, this woman taking these nutritional supplements, died from CJD.

The particular batch of pills that was located, in which she was taking, was tested. From what I have heard, they came up negative, for the prion protein. But, in the same breath, they said their testing, may not have been strong enough to pick up the infectivity. Plus, she had been taking these type pills for years, so, could it have come from another batch?

CWD is just a small piece of a very big puzzle. I have seen while deer hunting, deer, squirrels and birds, eating from cattle feed troughs where they feed cattle, the high protein cattle by products, at least up until Aug. 4, 1997.

So why would it be so hard to believe that this is how they might become infected with a TSE. Or, even by potentially infected land. It's been well documented that it could be possible, from scrapie. Cats becoming infected with a TSE. Have you ever read the ingredients on the labels of cat and dog food? But, they do not put these tissues from these animals in pharmaceuticals, cosmetics, nutritional supplements, hGH, hPG, blood products, heart valves, and the many more products that come from bovine, ovine, or porcine tissues and organs. So, as I said, this CWD would be a small piece of a very big puzzle. But, it is here, and it most likely has killed. You see, greed is what caused this catastrophe, rendering and feeding practices. But, once Pandora's box was opened, the potential routes of infection became endless.

No BSE in the U.S.A.? I would not be so sure of that considering that since 1990;

Since 1990 the U.S. has raised 1,250,880,700 cattle;

Since 1990 the U.S. has ONLY checked 8,881 cattle brains for BSE, as of Oct. 4, 1999;

There are apprx. 100,000 DOWNER cattle annually in the U.S., that up until Aug. 4, 1997 went to the renders for feed;

Scrapie running rampant for years in the U.S., 950 infected FLOCKS, as of Aug. 1999;

Our feeding and rendering practices have mirrored that of the U.K. for years, some say it was worse. Everything from the downer cattle, to those scrapie infected sheep, to any roadkill, including the city police horse and the circus elephant went to the renders for feed and other products for consumption. Then they only implemented a partial feed ban on Aug. 4, 1997, but pigs, chickens, dogs, and cats, and humans were exempt from that ban. So they can still feed pigs and chickens those potentially TSE tainted by-products, and then they can still feed those by-products back to the cows. I believe it was Dr. Joe Gibbs, that said, the prion protein, can survive the digestinal track. So you have stopped nothing. It was proven in Oprah Winfrey's trial, that Cactus Cattle feeders, sent neurologically ill cattle, some with encephalopathy stamped on the dead slips, were picked up and sent to the renders, along with sheep carcasses. Speaking of autopsies, I have a stack of them, from CJD victims. You would be surprised of the number of them, who ate cow brains, elk brains, deer brains, or hog brains.

I believe all these TSE's are going to be related, and originally caused by the same greedy Industries, and they will be many. Not just the Renders, but you now see, that they are re-using medical devices that were meant for disposal. Some medical institutions do not follow proper auto- claving procedures (even Olympus has put out a medical warning on their endescopes about CJD, and the fact you cannot properly clean these instruments from TSE's), and this is just one product. Another route of infection.

Regardless what the Federal Government in the U.S. says. It's here, I have seen it, and the longer they keep sweeping it under the rug and denying the fact that we have a serious problem, one that could surpass aids (not now, but in the years to come, due to the incubation period), they will be responsible for the continued spreading of this deadly disease.

It's their move, it's CHECK, but once CHECKMATE has been called, how many thousands or millions, will be at risk or infected or even dead. You can't play around with these TSE's. I cannot stress that enough. They are only looking at body bags, and the fact the count is so low. But, then you have to look at the fact it is not a reportable disease in most states, mis-diagnosis, no autopsies performed. The fact that their one-in-a- million theory is a crude survey done about 5 years ago, that's a joke, under the above circumstances. A bad joke indeed........

The truth will come, but how many more have to die such a hideous death. It's the Government's call, and they need to make a serious move, soon. This problem, potential epidemic, is not going away, by itself.

Terry S. Singeltary Sr.

Bacliff, Texas 77518 USA

flounder@wt.net

Competing interests: No competing interests 


Singeltary 2000

BMJ 2000; 320 doi: https://doi.org/10.1136/bmj.320.7226.8/b (Published 01 January 2000) Cite this as: BMJ 2000;320:8

02 January 2000 Terry S Singeltary retired

Rapid Response: 

U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well... 

In reading your short article about 'Scientist warn of CJD epidemic' news in brief Jan. 1, 2000. I find the findings in the PNAS old news, made famous again. Why is the U.S. still sitting on their butts, ignoring the facts? We have the beginning of a CJD epidemic in the U.S., and the U.S. Gov. is doing everything in it's power to conceal it.

The exact same recipe for B.S.E. existed in the U.S. for years and years. In reading over the Qualitative Analysis of BSE Risk Factors-1, this is a 25 page report by the USDA:APHIS:VS. It could have been done in one page. The first page, fourth paragraph says it all;

"Similarities exist in the two countries usage of continuous rendering technology and the lack of usage of solvents, however, large differences still remain with other risk factors which greatly reduce the potential risk at the national level."

Then, the next 24 pages tries to down-play the high risks of B.S.E. in the U.S., with nothing more than the cattle to sheep ratio count, and the geographical locations of herds and flocks. That's all the evidence they can come up with, in the next 24 pages.

Something else I find odd, page 16;

"In the United Kingdom there is much concern for a specific continuous rendering technology which uses lower temperatures and accounts for 25 percent of total output. This technology was _originally_ designed and imported from the United States. However, the specific application in the production process is _believed_ to be different in the two countries."

A few more factors to consider, page 15;

"Figure 26 compares animal protein production for the two countries. The calculations are based on slaughter numbers, fallen stock estimates, and product yield coefficients. This approach is used due to variation of up to 80 percent from different reported sources. At 3.6 million tons, the United States produces 8 times more animal rendered product than the United Kingdom."

"The risk of introducing the BSE agent through sheep meat and bone meal is more acute in both relative and absolute terms in the United Kingdom (Figures 27 and 28). Note that sheep meat and bone meal accounts for 14 percent, or 61 thousand tons, in the United Kingdom versus 0.6 percent or 22 thousand tons in the United States. For sheep greater than 1 year, this is less than one-tenth of one percent of the United States supply."

"The potential risk of amplification of the BSE agent through cattle meat and bone meal is much greater in the United States where it accounts for 59 percent of total product or almost 5 times more than the total amount of rendered product in the United Kingdom."

Considering, it would only take _one_ scrapie infected sheep to contaminate the feed. Considering Scrapie has run rampant in the U.S. for years, as of Aug. 1999, 950 scrapie infected flocks. Also, Considering only one quarter spoonful of scrapie infected material is lethal to a cow.

Considering all this, the sheep to cow ration is meaningless. As I said, it's 24 pages of B.S.e.

To be continued...

Terry S. Singeltary Sr. Bacliff, Texas USA

Competing interests: No competing interests


Singeltary 2001

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease 

To the Editor: 

In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.. 

Terry S. Singeltary, Sr Bacliff, Tex 

1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. 


Singeltary 2003

doi:10.1016/S1473-3099(03)00715-1 Copyright © 2003 Published by Elsevier Ltd. Newsdesk

Tracking spongiform encephalopathies in North America

Xavier Bosch

Available online 29 July 2003. 

Volume 3, Issue 8, August 2003, Page 463 

Volume 3, Number 8 01 August 2003

Newsdesk

Tracking spongiform encephalopathies in North America

Xavier Bosch

My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.

49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD) the relative of mad cow disease seen among deer and elk in the USA. Although his feverish search did not lead him to the smoking gun linking CWD to a similar disease in North American people, it did uncover a largely disappointing situation.

Singeltary was greatly demoralised at the few attempts to monitor the occurrence of CJD and CWD in the USA. Only a few states have made CJD reportable. Human and animal TSEs should be reportable nationwide and internationally, he complained in a letter to the Journal of the American Medical Association (JAMA 2003; 285: 733). I hope that the CDC does not continue to expect us to still believe that the 85% plus of all CJD cases which are sporadic are all spontaneous, without route or source.

Until recently, CWD was thought to be confined to the wild in a small region in Colorado. But since early 2002, it has been reported in other areas, including Wisconsin, South Dakota, and the Canadian province of Saskatchewan. Indeed, the occurrence of CWD in states that were not endemic previously increased concern about a widespread outbreak and possible transmission to people and cattle.

To date, experimental studies have proven that the CWD agent can be transmitted to cattle by intracerebral inoculation and that it can cross the mucous membranes of the digestive tract to initiate infection in lymphoid tissue before invasion of the central nervous system. Yet the plausibility of CWD spreading to people has remained elusive.

Part of the problem seems to stem from the US surveillance system. CJD is only reported in those areas known to be endemic foci of CWD. Moreover, US authorities have been criticised for not having performed enough prionic tests in farm deer and elk.

Although in November last year the US Food and Drug Administration issued a directive to state public-health and agriculture officials prohibiting material from CWD-positive animals from being used as an ingredient in feed for any animal species, epidemiological control and research in the USA has been quite different from the situation in the UK and Europe regarding BSE.

Getting data on TSEs in the USA from the government is like pulling teeth, Singeltary argues. You get it when they want you to have it, and only what they want you to have.

Norman Foster, director of the Cognitive Disorders Clinic at the University of Michigan (Ann Arbor, MI, USA), says that current surveillance of prion disease in people in the USA is inadequate to detect whether CWD is occurring in human beings; adding that, the cases that we know about are reassuring, because they do not suggest the appearance of a new variant of CJD in the USA or atypical features in patients that might be exposed to CWD. However, until we establish a system that identifies and analyses a high proportion of suspected prion disease cases we will not know for sure. The USA should develop a system modelled on that established in the UK, he points out.

Ali Samii, a neurologist at Seattle VA Medical Center who recently reported the cases of three hunters two of whom were friends who died from pathologically confirmed CJD, says that at present there are insufficient data to claim transmission of CWD into humans; adding that [only] by asking [the questions of venison consumption and deer/elk hunting] in every case can we collect suspect cases and look into the plausibility of transmission further. Samii argues that by making both doctors and hunters more aware of the possibility of prions spreading through eating venison, doctors treating hunters with dementia can consider a possible prion disease, and doctors treating CJD patients will know to ask whether they ate venison.

CDC spokesman Ermias Belay says that the CDC will not be investigating the [Samii] cases because there is no evidence that the men ate CWD-infected meat. He notes that although the likelihood of CWD jumping the species barrier to infect humans cannot be ruled out 100% and that [we] cannot be 100% sure that CWD does not exist in humans& the data seeking evidence of CWD transmission to humans have been very limited. 


Singeltary 2003

January 28, 2003; 60 (2) VIEWS & REVIEWS

RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States Terry S. Singeltary, retired (medically) 

Published March 26, 2003

26 March 2003

Terry S. Singeltary, retired (medically) CJD WATCH

I lost my mother to hvCJD (Heidenhain Variant CJD). I would like to comment on the CDC's attempts to monitor the occurrence of emerging forms of CJD. Asante, Collinge et al [1] have reported that BSE transmission to the 129-methionine genotype can lead to an alternate phenotype that is indistinguishable from type 2 PrPSc, the commonest sporadic CJD. However, CJD and all human TSEs are not reportable nationally. CJD and all human TSEs must be made reportable in every state and internationally. I hope that the CDC does not continue to expect us to still believe that the 85%+ of all CJD cases which are sporadic are all spontaneous, without route/source. We have many TSEs in the USA in both animal and man. CWD in deer/elk is spreading rapidly and CWD does transmit to mink, ferret, cattle, and squirrel monkey by intracerebral inoculation. With the known incubation periods in other TSEs, oral transmission studies of CWD may take much longer. Every victim/family of CJD/TSEs should be asked about route and source of this agent. To prolong this will only spread the agent and needlessly expose others. In light of the findings of Asante and Collinge et al, there should be drastic measures to safeguard the medical and surgical arena from sporadic CJDs and all human TSEs. I only ponder how many sporadic CJDs in the USA are type 2 PrPSc?


Singeltary 2007

The Pathological Protein: Mad Cow, Chronic Wasting, and Other Deadly Prion Diseases 

by Philip Yam 

''Answering critics like Terry Singeltary, who feels that the US undercounts CJD, Schonberger _conceded_ that the current surveillance system has errors but stated that most of the errors will be confined to the older population''...

Revisiting Sporadic CJD

It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow.org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that

223

prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people’s health.

Singeltary has similar inclinations, but unlike these men, he doesn’t have the professional credentials behind him. He is an 11th-grade dropout, a machinist who retired because of a neck injury sustained at work. But you might not know that from the vast stores of information in his mind and on his hard drive. Over the years, he has provided unacknowledged help to reporters around the globe, passing on files to such big-time players as The New York Times, Newsweek, and USA Today. His networking with journalists, activists, and concerned citizens has helped medical authorities make contact with suspected CJD victims. He has kept scientists informed with his almost daily posting of news items and research abstracts on electronic newsgroups, including the bulletin board on www.vegsource.com and the BSE-listserv run out of the University of Karlsruhe, Germany. His combative, blunt, opinionated style sometimes borders on obsessive ranting that earns praise from some officials and researchers but infuriates others—especially when he repeats his conviction that “the government has lied to us, the feed industry has lied to us—all over a buck.” As evidence, Singeltary cites the USDA’s testing approach, which targets downer cows and examined 19,900 of them in 2002. To him, the USDA should test 1 million cattle, because the incidence of BSE may be as low as one in a million, as it was in some European countries. That the U.S. does not, he thinks, is a sign that the government is really not interested in finding mad cows because of fears of an economic disaster.

Singeltary got into the field of transmissible spongiform encephalopathy in 1997, just after his mother died of sporadic CJD. She had an especially aggressive version—the Heidenhain variant—that first causes the patient to go blind and then to deteriorate rapidly. She died just ten weeks after her symptoms began. Singeltary, who said he had watched his grandparents die of cancer, considered her death by CJD to be much, much worse: “It’s something you never forget.” Her uncontrollable muscle twitching became so bad “that it took three of us to hold her one time,” Singeltary recalled. “She did everything but levitate in bed and spin her head.” Doctors originally diagnosed Alzheimer’s disease, but a postmortem neuropathological exam demanded by Singeltary revealed the true nature of her death.

224 CHAPTER 14

Classifying a disease as “sporadic” is another way for doctors to say they don’t know the cause. Normal prion proteins just turn rogue in the brain for no apparent reason. The term “sporadic” is often particularly hard for the victims’ families to accept, especially when the patient was previously in robust health. Maybe it was something in the water, they wonder, or in the air, or something they ate—the same questions CJD researchers tried to answer decades ago. The names “sporadic CJD” and “variant CJD” also confuse the public and raise suspicions that U.S. authorities are hiding something when they say there have been no native variant CJD cases in the country.

Singeltary suspected an environmental cause in his mother’s demise—a feeling reinforced a year later when a neighbor died of sporadic CJD. For years, the neighbor had been taking nutritional supplements that contained cow brain extracts. Researchers from the National Institutes of Health collected samples of the supplement, Singeltary recounted, and inoculated suspensions into mice. The mice remained healthy—which only means that those supplement samples tested were prion-free.

Scientists have made several attempts during the past few decades to find a connection between sporadic CJD and the environment. Often, these studies take the form of asking family members about CJD victims—their diet, occupation, medical history, hobbies, pets, and so forth—and comparing them with non-CJD subjects. Such case-control CJD studies have produced some intriguing—and sometimes contradictory—results. In 1985, Carleton Gajdusek and his NIH colleagues reported a correlation between CJD and eating a lot of roast pork, ham, hot dogs, and lamb, as well as rare meats and raw oysters.2 Yet they also recognized that the findings were preliminary and that more studies were needed.

Following up, Robert Will of the U.K. National CJD Surveillance Unit and others pooled this data with those from two other case-control studies on CJD (one from Japan and one from the U.K.). In particular, they figured the so-called odds ratio—calculated by dividing the frequency of a possible factor in the patient group by the frequency of the factor in the control group. An odds ratio greater than 1 means that the factor may be significant. In their study, Will and his collaborators found an increase of CJD in people who have worked as health professionals (odds ratio of 1.5) and people who have had contact with cows

Laying Odds 225

(1.7) and sheep (1.6). Unfortunately, those connections were not statistically significant: The numbers of pooled patients (117) and control subjects (333) were so small that the researchers felt the odds ratios needed to reach 2.5 to 8 (depending on the assumptions) before they could be deemed statistically significant. The only statistically significant correlations they found were between CJD and a family history of either CJD (19.1) or other psychotic disease (9.9), although the latter might simply be correlated because psychotic disease may be an early symptom of undiagnosed CJD.3 In contrast with earlier findings, the team concluded that there was no association between sporadic CJD and the consumption of organ meats, including brains (0.6).

Although these case-control studies shed a certain amount of light on potential risk factors for CJD, it’s impossible to draw firm conclusions. Obtaining data that produces statistically meaningful results can be difficult because of the rarity of CJD and hence the shortage of subjects. Human memory is quite fragile, too, so patients’ families may not accurately recall the lifestyle and dietary habits of their loved ones over the course of a decade or more. Consequently, researchers must cope with data that probably contain significant biases. In a review paper on CJD, Joe Gibbs of the NIH and Richard T. Johnson of Johns Hopkins University concluded that “the absence of geographic differences in incidence is more convincing evidence against major dietary factors, since large populations eschew pork and some consume no meat or meat products.” A CJD study of lifelong vegetarians, they proposed, could produce some interesting data.4

The inconclusive results of case-control studies do not completely rule out the environment as a possible cause of CJD. “Dr. Prusiner’s theory does fit much of the data of spontaneous generation of [malformed] PrP somewhere in the brain,” Will remarked—that is, the idea that sporadic CJD just happens by itself falls within the realm of the prion theory. Still, “it’s very odd, if you look at all the forms of human prion diseases there are, all of them are transmissible in the laboratory and could be due to some sort of infectious agent.”5 One of the great difficulties, he explained, is that “given that this is a disease of an extraordinarily long incubation period, are we really confident that we can exclude childhood exposure that is transmitted from person to person, as people move around? It’s difficult to be sure about that.” There might a “carrier state” that leaves people healthy yet still able to

226 CHAPTER 14

infect others. If so, “you would never be able to identify what’s causing the spread of the disease,” concluded Will, who hasn’t stopped looking for a possible environmental link. He has some preliminary data based on studies that trace CJD victims’ lives well before the time symptoms began—up to 70 years; they suggest some degree of geographic clustering, but no obvious candidates for a source of infection.

A Case for Undercounting

The difficulty in establishing causal links in sporadic prion diseases—if there are any in the first place—underlines the importance of thorough surveillance. The U.K. has an active program, and when a victim of CJD is reported, one of Robert Will’s colleagues visits and questions the victim’s family. “No one has looked for CJD systematically in the U.S.,” the NIH’s Paul Brown noted. “Ever.”6 The U.S., through the Centers for Disease Control and Prevention, has generally maintained a more passive system, collecting information from death certificates from the National Center for Health Statistics. Because CJD is invariably fatal, mortality data is considered to be an effective means of tabulating cases. The CDC assessed the accuracy of such data by comparing the numbers with figures garnered through an active search in 1996: Teams covering five regions of the U.S. contacted the specialists involved and reviewed medical records for CJD cases between 1991 and 1995. Comparing the actively garnered data with the death certificate information showed that “we miss about 14 percent,” said CDC epidemiologist Lawrence Schonberger. “That’s improving. Doctors are becoming more knowledgeable,” thanks to increased scientific and media attention given to prion diseases.7

The active surveillance study of 1996, however, only looked at cases in which physicians attributed the deaths to CJD. Misdiagnosed patients or patients who never saw a neurologist were not tabulated— thus CJD may be grossly underreported. Many neurological ailments share symptoms, especially early on. According to various studies, autopsies have found that CJD is misdiagnosed as other ills, such as dementia or Alzheimer’s disease, 5 to 13 percent of the time. The CDC finds that around 50,000Americans die from Alzheimer’s each year

Laying Odds 227

(about 4 million have the disease, according to the Alzheimer’s Association). Therefore, one could argue that thousands of CJD cases are being missed. (On the flip side, CJD could be mistakenly diagnosed as Alzheimer’s disease or dementia, but the number of CJD patients is so small that they wouldn’t dramatically skew the statistics for other neurological ills.)

In part to address the issue of misdiagnosis, CJD families have asked the CDC to place the disease on the national list of officially notifiable illnesses, which tends to include more contagious conditions such as AIDS, tuberculosis, hepatitis, and viral forms of encephalitis. Currently, only some states impose this requirement. CDC officials have discounted the utility of such an approach, arguing that it would duplicate the mortality data, which is more accurate than early diagnoses of CJD, anyway. Moreover, mandatory reporting of CJD cases does not necessarily guarantee the end to missed cases.8

One clue suggests that the passive system is undercounting CJD in the U.S.: racial difference. The number of black CJD victims is about 38 percent that of white victims. Rather than sporadic CJD being a onein-a-million lottery, it’s more like one-in-2.5-million for AfricanAmericans. Access to medical care might be one reason. Schonberger recounted that the CDC had asked other countries with substantial black populations to submit CJD figures for comparison but found that the surveillance in those countries was inadequate. “We haven’t been able to find any comparable literature on this issue, so it’s still up in the air,” Schonberger said. On the other hand, Alzheimer’s disease is more common among black people than whites, with an estimated higher prevalence ranging from 14 percent to almost 100 percent, according to a February 2002 report by the Alzheimer’s Association. Are some black CJD cases being misdiagnosed as Alzheimer’s?

Answering critics like Terry Singeltary, who feels that the U.S. undercounts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population. As Schonberger pointed out, no doctor would misdiagnose a 30-year-old CJD patient as having Alzheimer’s. The average age of the first 100 variant CJD victims was 29; should the epidemiology of vCJD change—if older people start coming down with it—then there would be problems. “The adequacy of our overall CJD surveillance would be greatly reduced should the proportion of older individuals affected by variant CJD substantially increase,” Schonberger explained.9

SNIP...SEE FULL TEXT;


''The average age of the first 100 variant CJD victims was 29; should the epidemiology of vCJD change—if older people start coming down with it—then there would be problems. “The adequacy of our overall CJD surveillance would be greatly reduced should the proportion of older individuals affected by variant CJD substantially increase,” Schonberger explained.9''


THE PATHOLOGICAL PROTEIN by Philip Yam


Singeltary Submission SEAC 2007

SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007 Singeltary Submission

This was 22 years to the day Mom died from the Heidenhain Variant of Creutzfeldt Jakob Disease i.e. hvCJD, when i made this submission to SEAC and this was their reply to my questions of concern about cjd in the USA, my how things have changed...terry

SEAC SPONGIFORM ENCEPHALOPATHY ADVISORY COMMITTEE Minutes of the 99th meeting held on 14th December 2007 

ITEM 8 – PUBLIC QUESTION AND ANSWER SESSION 40. The Chair explained that the purpose of the question and answer session was to give members of the public an opportunity to ask questions related to the work of SEAC. Mr Terry Singeltary (Texas, USA) had submitted a question prior to the meeting, asking: “With the Nor-98 now documented in five different states so far in the USA in 2007, and with the two atypical BSE H-base cases in Texas and Alabama, with both scrapie and chronic wasting disease (CWD) running rampant in the USA, is there any concern from SEAC with the rise of sporadic CJD in the USA from ''unknown phenotype'', and what concerns if any, in relations to blood donations, surgery, optical, and dental treatment, do you have with these unknown atypical phenotypes in both humans and animals in the USA? Does it concern SEAC, or is it of no concern to SEAC? Should it concern USA animal and human health officials?”

41. A member considered that this question appeared to be primarily related to possible links between animal and human TSEs in the USA. There is no evidence that sCJD is increasing in the USA and no evidence of any direct link between TSEs and CJD in the USA. Current evidence does not suggest that CWD is a significant risk to human health. There are unpublished data from a case of human TSE in the USA that are suggestive of an apparently novel form of prion disease with distinct molecular characteristics. However, it is unclear whether the case had been further characterised, if it could be linked to animal TSEs or if other similar cases had been found in the USA or elsewhere. In relation to the possible public health implications of atypical scrapie, H-type BSE and CWD, research was being conducted to investigate possible links and surveillance was in place to detect any changes in human TSEs. Although possible links between these diseases and human TSEs are of concern and require research, there is no evidence to suggest immediate public health action is warranted. The possible human health risks from classical scrapie had been discussed earlier in the meeting. Members noted that there are effective channels of discussion and collaboration on research between USA and European groups. Members agreed it is important to keep a watching brief on new developments on TSEs. 


Singeltary 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009

August 10, 2009

Greetings,

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. North America seems to have the most species with documented Transmissible Spongiform Encephalopathy's, most all of which have been rendered and fed back to food producing animals and to humans for years. If you look at the statistics, sporadic CJD seems to be rising in the USA, and has been, with atypical cases of the sCJD. I find deeply disturbing in the year of 2009, that Human Transmissible Spongiform Encephalopathy of any strain and or phenotype, of all age groups, and I stress all age groups, because human TSE's do not know age, and they do not know borders. someone 56 years old, that has a human TSE, that has surgery, can pass this TSE agent on i.e. friendly fire, and or passing it forward, and there have been documented nvCJD in a 74 year old. Remembering also that only sporadic CJD has been documented to transmit via iatrogenic routes, until recently with the 4 cases of blood related transmission, of which the origin is thought to be nvCJD donors. However most Iatrogenic CJD cases are nothing more than sporadic CJD, until the source is proven, then it becomes Iatrogenic. An oxymoron of sorts, because all sporadic CJD is, are multiple forms, or strains, or phenotypes of Creutzfeldt Jakob Disease, that the route and source and species have not been confirmed and or documented. When will the myth of the UKBSEnvCJD only theory be put to bed for good. This theory in my opinion, and the following there from, as the GOLD STANDARD, has done nothing more than help spread this agent around the globe. Politics and money have caused the terrible consequences to date, and the fact that TSEs are a slow incubating death, but a death that is 100% certain for those that are exposed and live long enough to go clinical. once clinical, there is no recourse, to date. But, while sub-clinical, how many can one exposed human infect? Can humans exposed to CWD and scrapie strains pass it forward as some form of sporadic CJD in the surgical and medical arenas? why must we wait decades and decades to prove this point, only to expose millions needlessly, only for the sake of the industries involved? would it not have been prudent from the beginning to just include all TSE's, and rule them out from there with transmission studies and change policies there from, as opposed to doing just the opposite? The science of TSE's have been nothing more than a political circus since the beginning, and for anyone to still believe in this one strain, one group of bovines, in one geographical location, with only one age group of human TSE i.e. nvCJD myth, for anyone to believe this today only enhances to spreading of these human and animal TSE's. This is exactly why we have been in this quagmire.

The ones that believe that there is a spontaneous CJD in 85%+ of all cases of human TSE, and the ones that do not believe that cattle can have this same phenomenon, are two of the same, the industry, and so goes the political science aspect of this tobacco and or asbestos scenario i.e. follow the money. I could go into all angles of this man made nightmare, the real facts and science, for instance, the continuing rendering technology and slow cooking with low temps that brewed this stew up, and the fact that THE USA HAD THIS TECHNOLOGY FIRST AND SHIPPED IT TO THE U.K. SOME 5 YEARS BEFORE THE U.S. STARTED USING THE SAME TECHNOLOGY, to save on fuel cost. This is what supposedly amplified the TSE agent via sheep scrapie, and spread via feed in the U.K. bovine, and other countries exporting the tainted product. BUT most everyone ignores this fact, and the fact that the U.S. has been recycling more TSE, from more species with TSEs, than any other country documented, but yet, it's all spontaneous, and the rise in sporadic CJD in the U.S. is a happenstance of bad luck ??? I respectfully disagree. To top that all off, the infamous BSE-FIREWALL that the USDA always brags about was nothing more than ink on paper, and I can prove this. YOU can ignore it, but this is FACT (see source, as late as 2007, in one recall alone, some 10,000,000 MILLION POUNDS OF BANNED MAD COW FEED WENT OUT INTO COMMERCE TO BE FED OUT, and most was never recovered. This was banned blood laced, meat and bone meal. 2006 was a banner year for banned mad cow protein going into commerce in the U.S. (see source of FDA feed ban warning letter below). I stress that the August 4, 1997 USA mad cow feed ban and this infamous BSE firewall, was nothing more than ink on paper, it was never enforceable.

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route. This would further have to be broken down to strain of species and then the route of transmission would further have to be broken down. Accumulation and Transmission are key to the threshold from sub- clinical to clinical disease, and key to all this, is to stop the amplification and transmission of this agent, the spreading of, no matter what strain. In my opinion, to continue with this myth that the U.K. strain of BSE one strain TSE in cows, and the nv/v CJD one strain TSE humans, and the one geographical location source i.e. U.K., and that all the rest of human TSE are just one single strain i.e. sporadic CJD, a happenstance of bad luck that just happens due to a twisted protein that just twisted the wrong way, IN 85%+ OF ALL HUMAN TSEs, when to date there are 6 different phenotypes of sCJD, and growing per Gambetti et al, and that no other animal TSE transmits to humans ??? With all due respect to all Scientist that believe this, I beg to differ. To continue with this masquerade will only continue to spread, expose, and kill, who knows how many more in the years and decades to come. ONE was enough for me, My Mom, hvCJD i.e. Heidenhain Variant CJD, DOD 12/14/97 confirmed, which is nothing more than another mans name added to CJD, like CJD itself, Jakob and Creutzfeldt, or Gerstmann-Straussler-Scheinker syndrome, just another CJD or human TSE, named after another human. WE are only kidding ourselves with the current diagnostic criteria for human and animal TSE, especially differentiating between the nvCJD vs the sporadic CJD strains and then the GSS strains and also the FFI fatal familial insomnia strains or the ones that mimics one or the other of those TSE? Tissue infectivity and strain typing of the many variants of the human and animal TSEs are paramount in all variants of all TSE. There must be a proper classification that will differentiate between all these human TSE in order to do this. With the CDI and other more sensitive testing coming about, I only hope that my proposal will some day be taken seriously. ...

please see history, and the ever evolving TSE science to date ;

Saturday, June 13, 2009

Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009


Singeltary 2010

Human Prion Diseases in the United States

Robert C. Holman ,Ermias D. Belay,Krista Y. Christensen,Ryan A. Maddox,Arialdi M. Minino,Arianne M. Folkema,Dana L. Haberling,Teresa A. Hammett,Kenneth D. Kochanek,James J. Sejvar,Lawrence B. Schonberger

Published: January 1, 2010

https://doi.org/10.1371/journal.pone.0008521

re-Human Prion Diseases in the United States

Posted by flounder on 01 Jan 2010 at 18:11 GMT

I kindly disagree with your synopsis for the following reasons ;



Terry S. Singeltary Sr.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.