EFSA reviews BSE/TSE infectivity in small ruminant tissues News Story 2 December 2010
EFSA has published today a scientific opinion on Transmissible Spongiform Encephalopathy (TSE)[1] infectivity in the tissues of small ruminants such as goats and sheep[2]. Based on new scientific evidence and taking into account the current situation with respect to the occurrence of TSEs in animals in the EU, EFSA’s Biological Hazards (BIOHAZ) panel has reviewed the distribution of TSE infectivity in small ruminant tissues and has provided for the first time a quantification of the impact of current SRM measures in managing TSE-related risks in small ruminants. The removal of Specified Risk Materials (SRM)[3] such as the brain and spinal cord from animals going into the food chain protects consumers from TSE-related risks. EFSA’s advice will help inform risk managers in the implementation of measures outlined in the TSE Road Map 2[4].
In this opinion, EFSA’s Biological Hazards (BIOHAZ) Panel reviews the latest scientific data on the infectivity of different small ruminant tissues for Classical scrapie, Atypical scrapie and BSE and takes into consideration aspects such as the age and genetic makeup of the animals. With the exception of Bovine Spongiform Encephalopathy (BSE), other TSEs in animals such as scrapie have not been found to be transmissible to humans.
The Panel noted that only one single case[5] of naturally occurring BSE has ever been identified in small ruminants worldwide. Moreover, the opinion provides a set of simulations quantifying for the first time the impact of different SRM options on reducing the risk from the possible presence of BSE in small ruminants. The Panel says that, should a BSE-infected small ruminant ever enter the food chain[6], the current SRM policy would allow a 10-fold reduction of the infectivity load, that is the level of TSE agent present in an infected animal. Experts also advise that the use of the dressed carcass only (excluding the head and the spinal cord) would allow a greater reduction of the BSE exposure risk than the current SRM measures.
With respect to classical scrapie, the panel concludes that, as for BSE, the current SRM policy allows a 10-fold reduction of the infectivity load. The Panel points out that a modification of the SRM list based only on considerations for BSE will also have an impact on human exposure to Classical and Atypical scrapie agents. In addition, the Panel adds that the infectivity of goat kids below 3 months of age is negligible, even if they come from infected herds.
For Atypical scrapie in sheep and goats, the Panel says that since some infectivity, albeit at low levels, can be found in other tissues[7] than those specified in the SRM list, it cannot be assumed that the current SRM measures will prevent the entry of the Atypical scrapie agent into the food chain.
The Panel recommends further improving data collection and risk assessment in this area of work. In particular, it recommends updating this opinion when data from ongoing experiments, such as those concerning the development of BSE in goats, become available. The Panel specifies that the development of specific assessment models could provide a more precise estimate of the impact of SRM removal policies on managing risks from TSEs.
Scientific Opinion on BSE/TSE infectivity in small ruminant tissues
Opinion on TSE Infectivity distribution in ruminant tissues issued by the Scientific Steering Committee (SSC) of the European Commission of 2002 For media enquiries, please contact: Ian Palombi, Press Officer or Steve Pagani, Head of Press Office Tel: +39 0521 036 149 Email: Press@efsa.europa.eu
--------------------------------------------------------------------------------
[1] Transmissible Spongiform Encephalopathies (TSEs) are a family of diseases that affect the brain and nervous system of humans and animals. The diseases are characterised by a degeneration of brain tissue giving it a sponge-like appearance. TSEs include Bovine Spongiform Encephalopathy (BSE) principally found in cattle, scrapie in sheep and goats, as well as variant Creutzfeldt Jakob Disease (vCJD) and other diseases in humans. Whilst scrapie (classical and atypical) has been known for centuries as a disease affecting sheep and goats , to date only one single case of naturally occurring BSE has ever been identified in small ruminants. More information on TSEs
[2] This opinion updates a previous opinion on TSE Infectivity distribution in ruminant tissues issued by the Scientific Steering Committee (SSC) of the European Commission of 2002.
[3] Specified risk materials are the tissues containing the highest risk of BSE infectivity. In the EU the removal of SRM, which is the most important public health measure to protect consumers from BSE risk, is mandatory since 2000. Various tissues including the brain, spinal cord, vertebral column, tonsils and ileum are classified and then consequently removed as SRM with specific rules defined by animal species and according to age. The list of SRM is indicated in Annex 5 of Regulation EC 999/2001.
[4] The road map is a strategic document of the European Commission which outlines possible future changes to measures in place in the EU to manage the risk of BSE and other TSEs and ensure a high level of consumer protection. On 16 July 2010 the Commission adopted a Communication to the European Parliament and the Council outlining areas where future possible changes to EU TSE-related measures could be made. The TSE Road Map 2 – A strategy paper on Transmissible Spongiform Encephalopathies for 2010-2015
[5] One goat slaughtered in 2002.
[6] In the EU, sheep and goats found to be infected with TSEs are excluded from the food and feed chain.
[7] Atypical scrapie infectivity can be found for instance in lymphoid tissues, nerves and skeletal muscles.
http://www.efsa.europa.eu/en/press/news/biohaz101202.htm?WT.mc_id=EFSAHL01&emt=1
Scientific Opinion on BSE/TSE infectivity in small ruminant tissues Question number: EFSA-Q-2010-00052
Adopted: 21 October 2010
http://www.efsa.europa.eu/en/scdocs/doc/s1875.pdf
http://www.efsa.europa.eu/en/scdocs/doc/s1875.pdf
please see ;
http://www.goatbse.eu/site/index.php
Scientific Opinion on BSE/TSE infectivity in small ruminant tissues Question number: EFSA-Q-2010-00052 Adopted: 21 October 2010
Summary (0.1 Mb)
Opinion (0.6 Mb)
Summary
Following a request from the European Commission (EC), the Panel on Biological Hazards (BIOHAZ Panel) was asked to deliver a scientific opinion on BSE/TSE infectivity in small ruminant tissues.
The most recent scientific opinion on TSE infectivity distribution in small ruminant tissues was published in January 2002 by the Scientific Steering Committees (SSC) and last amended in November 2002[1]. In recent years new scientific data relating to the infectivity of some tissues in small ruminants became available. Some of those findings related to the tissues from sheep and goats might have an impact to the current measures in relation to the Specified Risk Material (SRM) list of the Regulation (EC) 999/2001[2].
Therefore, the EC asked EFSA: i) to update, as regards small ruminants and on the basis of the most recent scientific data, the SSC scientific opinion from 2002 on TSE infectivity distribution in ruminant tissues; ii) to indicate based on the current epidemiological situation as regards BSE in the small ruminant population in EU, whether a review of the existing SRM list for small ruminants should be envisaged with regard to the potential exposure to the BSE agent.
The BIOHAZ Panel addressed the mandate by reviewing individually for Classical scrapie, BSE and Atypical scrapie in small ruminants aspects related to: i) tissue infectivity distribution according to the age and the genotype of sheep and goats; and ii) the infectious load in the different tissues.
In order to perform the assessment all the currently available scientific results were reviewed. Data about the TSE monitoring in small ruminants in the EU were provided by the European Commission and information on small ruminants slaughtered by species and age category in each EU Member State were provided by the EFSA Focal Points Network.
It was emphasized that this assessment required several assumptions. Moreover, the estimates of the infectious load are based on a simple approach using computations based on a low and a high estimate of each of the parameters. This provides order of magnitude estimates of the infectious load of TSE agents entering into the food chain at EU 27 level. This approach could be replaced by a probabilistic model to provide more insight into the uncertainties. However, due to time and resources constraints it was not possible for the BIOHAZ Panel to develop and validate such a probabilistic model within the framework of this mandate.
Considering Classical scrapie in small ruminants it was concluded that the current SRM policy allows a reduction of the relative infectivity associated to the carcass of an infected animal of about 1 log10 (infectious load as expressed in IC ID50[3] in C57Bl6 mice). The infectivity load as expressed in the opinion (IC ID50 in C57Bl6 mice) cannot be related to any quantifiable dietary transmission risk in farmed animals or humans.
As regards to Classical scrapie in goats, it was further concluded that, according to the currently available knowledge, goat kids below 3 months of age, even coming from infected herds, represent a negligible source of infectivity for the food chain.
On the basis of data collected between 2007 and 2009, the total number of Classical scrapie infected animals that could enter yearly into the food chain in the EU27 as a whole was estimated to approximately range between 16,000 and 67,000 (most probable estimate 29, 000) for sheep and between 10,000 and 34,000 (most probable estimate 13,000) for goats.
The Panel pointed out that Classical scrapie is present in a majority of EU member states. However because differences in the prevalence of the disease, population size and production system (age at slaughter), there are significant differences between certain member states with regards to Classical scrapie infectivity load that may enter the food chain. This heterogeneity and the differences in consumption pattern between countries and regions mean that the dietary exposure to Classical scrapie cannot be considered to be homogeneous in the EU27.
It was furthermore concluded that at the EU27 level, the current SRM policy in force allows a global reduction of the potential exposure to Classical scrapie which can be estimated to be around 1 log10 (infectious load as expressed in IC ID50 in C57Bl6 mice).
When considering BSE in small ruminants, the Panel concluded that with 95% confidence the the number of BSE cases that could enter yearly into the food chain in the EU is ranging between 0 and 240 for sheep and between 0 and 381 for goats. This estimate argues against any current widespread BSE epidemic within the EU small ruminant population.
The BIOHAZ Panel indicated that the current SRM policy allows a reduction of the relative infectivity associated to the carcass of a BSE infected animal of about 1 log10 (infectious load as expressed in IC ID50 in C57Bl6 mice). The infectivity load as expressed in the opinion (IC ID50 in C57Bl6 mice) cannot be related to any quantifiable dietary transmission risk in farmed animals or humans.
It was further emphasized that preliminary biochemical and immunohistochemical data in goats suggest that there might be no major involvement of the lymphoid tissues in preclinical and clinical phase of the disease after oral experimental challenge. Before more complete information becomes available it is not possible to provide reliable specific estimates of the impact of SRM removal measures on the BSE exposure that would be associated with an infected goat entering into the food chain. The Panel highlighted that in this context the estimates of the impact of SRM removal measures on the BSE exposure provided for BSE in sheep could be considered as a worst case scenario for BSE in goats.
As regards to Atypical scrapie both in sheep and goats it was concluded that low levels of infectivity can be present in peripheral tissues (lymphoid tissues, nerves, skeletal muscle) in preclinical and clinical cases of Atypical scrapie harbouring various genotypes. Consequently SRM measures cannot be assumed to prevent the entry of the Atypical scrapie agent into the food chain.
It was highlighted that there is currently no data on the kinetics of distribution of the Atypical scrapie agent into peripheral tissues of incubating small ruminants and that there are uncertainties on the Atypical scrapie pathogenesis and its true prevalence in the EU small ruminant population. Therefore, the Panel was not in position to provide an assessment of the current Atypical scrapie infectious load entering into the food chain.
In answering to the first Term of Reference, the BIOHAZ Panel revised the TSE tissue infectivity distribution in small ruminants and provided updated information within the body of the opinion (section 2, tables 1 to 12).
Considering the second Term of Reference, the BIOHAZ Panel provided a set of simulations illustrating the impact of different policy options on the BSE infectious load potentially present in an infected sheep. According to these simulations, the use of the dressed carcass[4] only would allow a greater reduction of the BSE exposure risk than the current SRM policy measures. The elimination of the ileum has a major impact on the relative reduction of the BSE infectivity load that might enter in the food chain from an animal aged below 12 months. The CNS (Central Nervous System) removal is the most efficient measure to reduce the relative infectivity load associated with a BSE infected small ruminant older than 12 months entering into the food chain.
It was finally indicated that a modification of the SRM list driven only by consideration about BSE will also impact on the dietary exposure to Classical scrapie and Atypical scrapie agents.
The BIOHAZ Panel recommended: i) to update the assessment once data from ongoing experiments will become available; ii) to develop a specific probabilistic model in order to provide more precise estimates of the impact of SRM removal on the infectious load of TSE agents entering into the food chain at EU 27 level; iii) to improve the quality of the data collected on the small ruminant population (e.g. age category and destination of the animal); and iv) to expand the current data collected in the context of the TSE surveillance activities by recording the tested animal age category and the type of rapid test used.
Published: 2 December 2010
http://www.efsa.europa.eu/en/scdocs/scdoc/1875.htm
http://www.efsa.europa.eu/en/scdocs/doc/s1875.pdf
3.2.1. Conclusions • According to the model developed by EFSA in its opinion of January 2007 the maximum number of BSE cases in the EU27 sheep population is equal to or below 4.2 per million sheep with a most probable value of 0, under the assumption of a 50% sensitivity of the screening test. • According to the model developed by EFSA in its opinion of January 2007 the maximum number of BSE cases in the EU27 goat population is equal to or below 53.7 per million goats with a most probable value of 14.7, under the assumption of a 50% sensitivity of the screening test. • There are uncertainties related to the technical limits of the methodology applied to detect BSE in sheep (discriminatory assay).
snip...
2.3. BSE
BSE agent possible spread in small ruminants has been considered as a major threat over the last 15
years.
To date, there has been:
• no report of naturally occurring BSE in sheep in the commercial situation,
• one confirmed case of natural BSE in a goat was reported in France 2002 (Eloit et al., 2005).
Both sheep and goats have been shown to be susceptible to the BSE agent and in the absence of natural cases to be studied, all the knowledge related to BSE pathogenesis in small ruminants relies on experimental challenges in sheep (Bellworthy et al., 2008; Bellworthy et al., 2005b; Gonzalez et al., 2005; Jeffrey et al., 2001b; van Keulen et al., 2008a) and goats EU “goatBSE project (FOOD-CT-2006-36353)8.
Like the situation in natural scrapie, PRNP polymorphisms have a major impact on BSE susceptibility and dissemination of the agent in the organs. However, PRNP genotypes that are associated with the highest susceptibility in the context of BSE in sheep are different from those observed for natural scrapie. Moreover it is now well documented that BSE agent can propagate in sheep bearing the ARR/ARR genotype after oral exposure (Andreoletti et al., 2006; Lantier et al., 2008).
The low natural prevalence of BSE in a number of species (including human) other than cattle that were exposed to cattle BSE suggests the existence of real barrier to transmission of this disease under natural conditions. However, recently the BSE agent in sheep was described to harbour a higher virulence and capacities to cross the transmission barrier than the original BSE cattle agent (Espinosa et al., 2007; Espinosa et al., 2009). These observations suggest that exposure to small ruminant passaged BSE agent might result in a higher transmission rate in a third species compared to that observed with cattle BSE.
8 Details available at http://www.goatbse.eu
BSE/TSE infectivity in small ruminant tissues
EFSA Journal 2010;8(11):1875 26
Recently presented data suggest that BSE adapted in small ruminants might have a higher efficacy to cross the human species barrier (as modelled in transgenic mice expressing the human PrP Met 129 gene) than cattle BSE (Plinstone et al., 2010). Currently the minimum BSE infectious dose that would allow to infect a human being remains unknown.
2.3.1. BSE in sheep
The distribution of PrPSc in sheep experimentally infected with BSE is very similar to that observed in sheep with Classical scrapie. It involves the lymphoreticular system, the peripheral nervous system, enteric nervous system, muscle, blood and Central nervous system (Foster et al., 1993; Jeffrey et al., 2001b; van Keulen et al., 2008b). More recently scant PrPSc deposits have been detected in the liver of clinical and preclinical and ARQ/ARQ BSE (Everest et al., 2009), which is consistent with earliest report of infectivity presence in this tissue (Bellworthy et al., 2005b).
The presence of PrPSc was described in lymphoreticular tissues from sheep clinically affected with ARR/ARR and VRQ/VRQ genotype (Andreoletti et al., 2006; Bellworthy et al., 2008) although with greatly prolonged incubation periods compared to ARQ/ARQ or AHQ/AHQ sheep. Together studies published by (Bellworthy et al., 2005b; van Keulen et al., 2008a) and the data presented by Lantier et al. (Lantier et al., 2008) provides an overall picture of the dissemination kinetics of the BSE agent in the organs of orally challenged ARQ/ARQ sheep (see Table 11).
snip...
2.3.2. BSE in goats
Until recently, there was no specific data describing the pathogenesis of the BSE agent following oral exposure of goats. In that context, BSE risk assessments undertaken so far in that species have relied on the assumption that BSE in goats would behave similarly to natural scrapie in goats and experimental BSE in sheep (EFSA, 2005a).
Within the framework of the European GoatBSE project (FOOD-CT-2006-36353; www.goatBSE.eu), oral challenge experiments of BSE to goats were performed using either cattle BSE isolate or experimental goat BSE isolate (INRA; the University of Edinburgh; Friedrich-Loeffler Institute).
Animals harbouring various PRNP genotypes were inoculated; the (expected) susceptible wild-type I142R211Q222/IRQ, the animals with lower susceptibility genotypes I142Q211Q222/IRQ, I142R211K222/IRQ and M142R211Q222/IRQ were used (EFSA Panel on Biological Hazards (BIOHAZ), 2009).
BSE/TSE infectivity in small ruminant tissues
EFSA Journal 2010;8(11):1875 29
Serial kills of a defined number of animals were performed at 6 and 12 and 24 months post infection. To date, PrPSc was detected in the brainstem (PTA-immunoblot and imunohistochemistry) of four wild-type goats 24 months post infection, which indicates a BSE-infection.
Additionally in these animals PrPSc deposition (Immunohistochemistry) was found in the gut (GALT) and the peripheral nervous system of the time point killed animals, but not in other lymphoid tissues.
These PrPSc detection results (Immunohistochemistry) are consistent with a lack of major involvement of the lymphoreticular tissues. In order to confirm these results, a panel of relevant tissues are currently being tested by bioassay ovine PrP overexpressing mice (TgshpXV).
In the meanwhile available results remain too preliminary to draw definitive conclusions. However, if confirmed, they would signify that BSE pathogenesis in sheep and goats might be dissimilar. Under such scenario the use of data collected in sheep infected with BSE could not anymore be considered pertinent to assess BSE risk in goat, other than to assume that extrapolating from sheep data would give a worst case scenario.
2.3.3. BSE conclusions
• In sheep:
Dissemination and distribution of PrPSc in the organs of orally challenged sheep bearing the ARQ/ARQ genotype is well documented.
The kinetics of distribution of the BSE agent in sheep harbouring other genotypes is less or not documented.
There is little information available on the infectivity titer in the tissues of BSE affected sheep at the different stages of the disease.
• In goats:
Preliminary data, after oral experimental challenge, suggest that there is apparently no major involvement of the lymphoid tissues in the preclinical and clinical phase. However, these data need to be completed and confirmed.
Pathogenesis data collected in sheep can be considered as a worst case scenario for BSE in goats.
There is no information available on the infectivity titer in the tissues of BSE affected goats at the different stages of the disease.
snip...
http://www.efsa.europa.eu/en/scdocs/doc/1875.pdf
SCIENTIFIC OPINION
Scientific Opinion on BSE/TSE infectivity in small ruminant tissues1
EFSA Panel on Biological Hazards (BIOHAZ)2, 3
European Food Safety Authority (EFSA), Parma, Italy
ABSTRACT
The objectives addressed were i) to provide an update on TSE (Transmissible Spongiform Encephalopathy) infectivity distribution in small ruminant tissues; and ii) to indicate based on the current epidemiological situation as regards to BSE (Bovine Spongiform Encephalopathy) in the small ruminant population in the EU (European Union), whether a review of the existing SRM (Specified Risk Materials) list for small ruminants should be envisaged with regard to the potential exposure to the BSE agent. The appraisal was addressed by reviewing for Classical scrapie, BSE and Atypical scrapie in small ruminants aspects related to: i) tissue infectivity distribution according to the age and the genotype of sheep and goats; and ii) the infectious load in the different tissues. In order to perform the assessment all the currently available scientific results were reviewed, and data on TSE monitoring in small ruminants in the EU and on small ruminants slaughtered by species and age category in each EU Member State were considered. The reduction of the infectivity associated to the carcass of an infected individual achieved by the current SRM policy in small ruminants for Classical scrapie and BSE was estimated. The total number of Classical scrapie infected sheep and goats that could enter yearly into the food chain was provided. Moreover, considerations about Atypical scrapie were given. A set of simulations allowing estimating the impact of different policy options on the BSE infectious load potentially present in an infected sheep was provided.
© European Food Safety Authority, 2010
KEY WORDS
Bovine Spongiform Encephalopathy (BSE), Classical scrapie, Atypical scrapie, Transmissible Spongiform Encephalopathies (TSEs), Specified Risk Material (SRM), Small Ruminants
snip...
When considering BSE in small ruminants, the Panel concluded that with 95% confidence the the number of BSE cases that could enter yearly into the food chain in the EU is ranging between 0 and 240 for sheep and between 0 and 381 for goats. This estimate argues against any current widespread BSE epidemic within the EU small ruminant population.
http://www.goatbse.eu/site/images/stories/diverse/opinion%20on%20bse-tse%20infectivity%20in%20sruminants.pdf
BSE has been detected in two goats. One case was a French goat which was born in 2000 and died in 2002. The second was a British goat which was born in 1987 and died in 1990.
http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/bse/othertses/scrapie/
http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/bse/science-research/sheep-goats/experimental.htm
http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/bse/science-research/projects-table.htm#3d
http://www.defra.gov.uk/foodfarm/farmanimal/diseases/atoz/bse/science-research/documents/bse-sheep-goats.pdf
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep
http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html
One of these isolates (TR316211) behaved like the CH1641 isolate, with PrPres features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrPres phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrPres, the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrPres from "CH1641-like" isolates showed lower levels of diglycosylated PrPres. From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrPres profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrPres, and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
http://jvi.asm.org/cgi/content/full/81/13/7230?view=long&pmid=17442721
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=182469
4.2.9 A further hypothesis to explain the occurrence of BSE is the emergence or selection of a strain or strains of the scrapie agent pathogenic for cattle. Mutations of the scrapie agent. which can occur after a single passage in mice. have been well documented (9). This phenomenon cannot be dismissed for BSE. but given the form of the epidemic and the geographically widespread occurrence of BSE, such a hypothesis" would require the emergence of a mutant scrapie strain simultaneously in a large . number of sheep flocks, or cattle. throughout the country. Also. if it resulted "from a localised chance transmission of the scrapie strain from sheep to cattle giving rise , . to a mutant. a different pattern of disease would have been expected: its range would '. have increased with time. Thus the evidence from Britain is against the disease being due to a new strain of the agent, but we note that in the United States from 1984 to 1988 outbreaks of scrapie in sheep flocks are reported to have Increased markedly. now being nearly 3 times as high as during any previous period (18).
http://collections.europarchive.org/tna/20080102132706/http://www.bseinquiry.gov.uk/files/ib/ibd1/tab02.pdf
If the scrapie agent is generated from ovine DNA and thence causes disease in other species, then perhaps, bearing in mind the possible role of scrapie in CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the notifiable disease. ...
http://collections.europarchive.org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1988/06/08004001.pdf
http://scrapie-usa.blogspot.com/2007/12/scrapie-hb-parry-seriously-yb886841.html
EVIDENCE OF SCRAPIE IN SHEEP AS A RESULT OF FOOD BORNE EXPOSURE
This is provided by the statistically significant increase in the incidence of sheep scrape from 1985, as determined from analyses of the submissions made to VI Centres, and from individual case and flock incident studies. ........
http://web.archive.org/web/20010305222246/www.bseinquiry.gov.uk/files/yb/1994/02/07002001.pdf
RISK OF BSE TO SHEEP VIA FEED
http://collections.europarchive.org/tna/20090114022605/http://www.bseinquiry.gov.uk/files/sc/seac31/tab01.pdf
Marion Simmons communicated surprising evidence for oral transmissibility of Nor98/atypical scrapie in neonatal sheep and although bioassay is ongoing, infectivity of the distal ileum of 12 and 24 month infected sheep is positive in Tg338 mice.
http://www.goatbse.eu/site/index.php?option=com_content&view=article&id=94:minutes-workshop-2010&catid=9:popular&Itemid=22
SUMMARY REPORTS OF MAFF BSE TRANSMISSION STUDIES AT THE CVL ;
http://collections.europarchive.org/tna/20090114023010/http://www.bseinquiry.gov.uk/files/sc/seac18/tab02b.pdf
THE RISK TO HUMANS FROM SHEEP;
http://collections.europarchive.org/tna/20090114022915/http://www.bseinquiry.gov.uk/files/sc/seac24/tab03.pdf
EXPERIMENTAL TRANSMISSION OF BSE TO SHEEP
http://collections.europarchive.org/tna/20090114023211/http://www.bseinquiry.gov.uk/files/sc/seac25/tab05.pdf
SHEEP AND BSE
PERSONAL AND CONFIDENTIAL
SHEEP AND BSE
A. The experimental transmission of BSE to sheep.
Studies have shown that the ''negative'' line NPU flock of Cheviots can be experimentally infected with BSE by intracerebral (ic) or oral challenge (the latter being equivalent to 0.5 gram of a pool of four cow brains from animals confirmed to have BSE).
http://collections.europarchive.org/tna/20090506010048/http://www.bseinquiry.gov.uk/files/sc/seac33/tab02.pdf
RB264
BSE - TRANSMISSION STUDIES
http://collections.europarchive.org/tna/20090113230127/http://www.bseinquiry.gov.uk/files/sc/Seac06/tab06.pdf
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were exposed to the infectious agents only by their nonforced consumption of known infectious tissues. The asymptomatic incubation period in the one monkey exposed to the virus of kuru was 36 months; that in the two monkeys exposed to the virus of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively. Careful physical examination of the buccal cavities of all of the monkeys failed to reveal signs or oral lesions. One additional monkey similarly exposed to kuru has remained asymptomatic during the 39 months that it has been under observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie by natural feeding to squirrel monkeys that we have reported provides further grounds for concern that scrapie-infected meat may occasionally give rise in humans to Creutzfeldt-Jakob disease.
PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
12/10/76 AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON SCRAPIE Office Note CHAIRMAN: PROFESSOR PETER WILDY
snip...
A The Present Position with respect to Scrapie A] The Problem Scrapie is a natural disease of sheep and goats. It is a slow and inexorably progressive degenerative disorder of the nervous system and it ia fatal. It is enzootic in the United Kingdom but not in all countries. The field problem has been reviewed by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in Britain for a variety of reasons but the disease causes serious financial loss; it is estimated that it cost Swaledale breeders alone $l.7 M during the five years 1971-1975. A further inestimable loss arises from the closure of certain export markets, in particular those of the United States, to British sheep. It is clear that scrapie in sheep is important commercially and for that reason alone effective measures to control it should be devised as quickly as possible. Recently the question has again been brought up as to whether scrapie is transmissible to man. This has followed reports that the disease has been transmitted to primates.
One particularly lurid speculation (Gajdusek 1977) conjectures that the agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible encephalopathy of mink are varieties of a single "virus". The U.S. Department of Agriculture concluded that it could "no longer justify or permit scrapie-blood line and scrapie-exposed sheep and goats to be processed for human or animal food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by the finding that some strains of scrapie produce lesions identical to the once which characterise the human dementias" Whether true or not. the hypothesis that these agents might be transmissible to man raises two considerations. First, the safety of laboratory personnel requires prompt attention. Second, action such as the "scorched meat" policy of USDA makes the solution of the acrapie problem urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
http://web.archive.org/web/20010305223125/www.bseinquiry.gov.uk/files/yb/1976/10/12004001.pdf
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca fascicularis).
Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972); doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey (Macaca fascicularis) with an incubation period of more than 5 yr from the time of intracerebral inoculation of scrapie-infected mouse brain. The animal developed a chronic central nervous system degeneration, with ataxia, tremor and myoclonus with associated severe scrapie-like pathology of intensive astroglial hypertrophy and proliferation, neuronal vacuolation and status spongiosus of grey matter. The strain of scrapie virus used was the eighth passage in Swiss mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton, Berkshire).
http://www.nature.com/nature/journal/v236/n5341/abs/236073a0.html
Epidemiology of Scrapie in the United States 1977
http://web.archive.org/web/20030513212324/http://www.bseinquiry.gov.uk/files/mb/m08b/tab64.pdf
Sunday, April 18, 2010
SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010
http://scrapie-usa.blogspot.com/2010/04/scrapie-and-atypical-scrapie.html
One of these isolates (TR316211) behaved like the CH1641 isolate, with PrPres features in mice similar to those in the sheep brain. From two other isolates (O100 and O104), two distinct PrPres phenotypes were identified in mouse brains, with either high (h-type) or low (l-type) apparent molecular masses of unglycosylated PrPres, the latter being similar to that observed with CH1641, TR316211, or BSE. Both phenotypes could be found in variable proportions in the brains of the individual mice. In contrast with BSE, l-type PrPres from "CH1641-like" isolates showed lower levels of diglycosylated PrPres. From one of these cases (O104), a second passage in mice was performed for two mice with distinct PrPres profiles. This showed a partial selection of the l-type phenotype in mice infected with a mouse brain with predominant l-type PrPres, and it was accompanied by a significant increase in the proportions of the diglycosylated band. These results are discussed in relation to the diversity of scrapie and BSE strains.
http://jvi.asm.org/cgi/content/full/81/13/7230?view=long&pmid=17442721
In the US, scrapie is reported primarily in sheep homozygous for 136A/171Q (AAQQ) and the disease phenotype is similar to that seen with experimental strain CH1641.
http://www.ars.usda.gov/research/publications/publications.htm?seq_no_115=182469
PR-26
NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS
R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B. Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto Superiore di Sanità, Department of Food Safety and Veterinary Public Health, Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo, Norway
Molecular variants of PrPSc are being increasingly investigated in sheep scrapie and are generally referred to as “atypical” scrapie, as opposed to “classical scrapie”. Among the atypical group, Nor98 seems to be the best identified. We studied the molecular properties of Italian and Norwegian Nor98 samples by WB analysis of brain homogenates, either untreated, digested with different concentrations of proteinase K, or subjected to enzymatic deglycosylation. The identity of PrP fragments was inferred by means of antibodies spanning the full PrP sequence. We found that undigested brain homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11), truncated at both the C-terminus and the N-terminus, and not N-glycosylated. After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11. Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at the highest concentrations, similarly to PrP27-30 associated with classical scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment of 17 kDa with the same properties of PrP11, that was tentatively identified as a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in 2% sodium laurylsorcosine and is mainly produced from detergentsoluble, full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a sample with molecular and pathological properties consistent with Nor98 showed plaque-like deposits of PrPSc in the thalamus when the brain was analysed by PrPSc immunohistochemistry. Taken together, our results show that the distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids ~ 90-155. This fragment is produced by successive N-terminal and C-terminal cleavages from a full-length and largely detergent-soluble PrPSc, is produced in vivo and is extremely resistant to PK digestion. Intriguingly, these conclusions suggest that some pathological features of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
119
http://www.neuroprion.com/pdf_docs/conferences/prion2006/abstract_book.pdf
P03.141
Aspects of the Cerebellar Neuropathology in Nor98
Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National Veterinary Insitute, Sweden; 2National Veterinary Institute,
Norway Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein (PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.
http://www.neuroprion.com/pdf_docs/conferences/prion2007/abstract_book.pdf
A newly identified type of scrapie agent can naturally infect sheep with resistant PrP genotypes
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?, Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author Affiliations
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et Cytogénétique, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon, France; **Pathologie Infectieuse et Immunologie, Institut National de la Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology, National Veterinary Institute, 0033 Oslo, Norway
Edited by Stanley B. Prusiner, University of California, San Francisco, CA (received for review March 21, 2005)
Abstract Scrapie in small ruminants belongs to transmissible spongiform encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative disorders that affect humans and animals and can transmit within and between species by ingestion or inoculation. Conversion of the host-encoded prion protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP (PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified surveillance of scrapie in the European Union, together with the improvement of PrPSc detection techniques, has led to the discovery of a growing number of so-called atypical scrapie cases. These include clinical Nor98 cases first identified in Norwegian sheep on the basis of unusual pathological and PrPSc molecular features and "cases" that produced discordant responses in the rapid tests currently applied to the large-scale random screening of slaughtered or fallen animals. Worryingly, a substantial proportion of such cases involved sheep with PrP genotypes known until now to confer natural resistance to conventional scrapie. Here we report that both Nor98 and discordant cases, including three sheep homozygous for the resistant PrPARR allele (A136R154R171), efficiently transmitted the disease to transgenic mice expressing ovine PrP, and that they shared unique biological and biochemical features upon propagation in mice. These observations support the view that a truly infectious TSE agent, unrecognized until recently, infects sheep and goat flocks and may have important implications in terms of scrapie control and public health.
http://www.pnas.org/content/102/44/16031.abstract
Monday, December 1, 2008
When Atypical Scrapie cross species barriers
Authors
Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J. M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France; ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex, France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway, INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.
Content
Atypical scrapie is a TSE occurring in small ruminants and harbouring peculiar clinical, epidemiological and biochemical properties. Currently this form of disease is identified in a large number of countries. In this study we report the transmission of an atypical scrapie isolate through different species barriers as modeled by transgenic mice (Tg) expressing different species PRP sequence.
The donor isolate was collected in 1995 in a French commercial sheep flock. inoculation into AHQ/AHQ sheep induced a disease which had all neuro-pathological and biochemical characteristics of atypical scrapie. Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate retained all the described characteristics of atypical scrapie.
Surprisingly the TSE agent characteristics were dramatically different v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and biochemical characteristics similar to those of atypical BSE L in the same mouse model. Moreover, whereas no other TSE agent than BSE were shown to transmit into Tg porcine mice, atypical scrapie was able to develop into this model, albeit with low attack rate on first passage.
Furthermore, after adaptation in the porcine mouse model this prion showed similar biological and biochemical characteristics than BSE adapted to this porcine mouse model. Altogether these data indicate.
(i) the unsuspected potential abilities of atypical scrapie to cross species barriers
(ii) the possible capacity of this agent to acquire new characteristics when crossing species barrier
These findings raise some interrogation on the concept of TSE strain and on the origin of the diversity of the TSE agents and could have consequences on field TSE control measures.
http://www.neuroprion.org/resources/pdf_docs/conferences/prion2008/abstract-book-prion2008.pdf
Gerstmann-Straussler's disease, atypical multiple sclerosis and carcinomas in a family of sheepbreeders. Acta Neuropath. 56: 87-92, 1982. Peiffer (1982) described a family of sheepbreeders in which a father and 2 sons had GSS. All 3 also had congenital hip dysplasia, as did at least 3 other members of the kindred, all females. Atactic symptoms, dysarthria, and personality changes characterized the clinical course of this disorder, which might be labeled atypical multiple sclerosis. Like CJD , GSS is a form of subacute spongiform encephalopathy. Cases of GSS are clinically similar to the atactic type of CJD. Although there are many neuropathologic similarities, GSS differs from CJD by the presence of kuru-plaques and numerous multicentric, floccular plaques in the cerebral and cerebellar cortex, basal ganglia, and white matter. Whereas only 5 to 15% of CJD cases are familial, most cases of GSS are familial.
http://www.mad-cow.org/Alzheimer_cjd.html
LET'S take a closer look at this new prionpathy or prionopathy, and then let's look at the g-h-BSEalabama mad cow.
This new prionopathy in humans? the genetic makeup is IDENTICAL to the g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like this, ......wait, it get's better. this new prionpathy is killing young and old humans, with LONG DURATION from onset of symptoms to death, and the symptoms are very similar to nvCJD victims, OH, and the plaques are very similar in some cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets even better, the new human prionpathy that they claim is a genetic TSE, has no relation to any gene mutation in that family. daaa, ya think it could be related to that mad cow with the same genetic make-up ??? there were literally tons and tons of banned mad cow protein in Alabama in commerce, and none of it transmitted to cows, and the cows to humans there from ??? r i g h t $$$
ALABAMA MAD COW g-h-BSEalabama
In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html
her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS Pathog. 4, e1000156; 2008).
This raises the possibility that the disease could occasionally be genetic in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the UK epidemic had most likely originated from such a mutation and argued against the scrapierelated assumption. Such rare potential pathogenic PRNP mutations could occur in countries at present considered to be free of BSE, such as Australia and New Zealand. So it is important to maintain strict surveillance for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many countries still feed ruminant proteins to pigs). Removal of specified risk material, such as brain and spinal cord, from cattle at slaughter prevents infected material from entering the human food chain. Routine genetic screening of cattle for PRNP mutations, which is now available, could provide additional data on the risk to the public. Because the point mutation identified in the Alabama animals is identical to that responsible for the commonest type of familial (genetic) CJD in humans, it is possible that the resulting infective prion protein might cross the bovine–human species barrier more easily. Patients with vCJD continue to be identified. The fact that this is happening less often should not lead to relaxation of the controls necessary to prevent future outbreaks.
Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier Hall, Manhattan, Kansas 66506-5601, USA
NATUREVol 45726 February 2009
http://www.nature.com/nature/journal/v457/n7233/full/4571079b.html
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
http://bse-atypical.blogspot.com/2010/10/experimental-transmission-of-h-type.html
The most recent assessments (and reassessments) were published in June 2005 (Table I; 18), and included the categorisation of Canada, the USA, and Mexico as GBR III. Although only Canada and the USA have reported cases, the historically open system of trade in North America suggests that it is likely that BSE is present also in Mexico.
http://www.oie.int/boutique/extrait/06heim937950.pdf
Rare BSE mutation raises concerns over risks to public health
SIR — Atypical forms (known as H- and L-type) of bovine spongiform encephalopathy (BSE) have recently appeared in several European countries as well as in Japan, Canada and the United States. This raises the unwelcome possibility that variant Creutzfeldt–Jakob disease (vCJD) could increase in the human population. Of the atypical BSE cases tested so far, a mutation in the prion protein gene (PRNP) has been detected in just one, a cow in Alabama with BSE;
http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF
http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep
http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html
Monday, November 22, 2010
Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control
REVIEW ARTICLES
http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/atypical-transmissible-spongiform.html
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html
Saturday, December 11, 2010
Species-barrier-independent prion replication in apparently resistant species
http://transmissiblespongiformencephalopathy.blogspot.com/2010/12/species-barrier-independent-prion.html
Monday, November 30, 2009
USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH CODE
http://nor-98.blogspot.com/2009/11/usda-and-oie-collaborate-to-exclude.html
http://bseusa.blogspot.com/2010/04/usda-and-oie-out-of-touch-with-risk.html
Sunday, March 28, 2010
Nor-98 atypical Scrapie, atypical BSE, spontaneous TSE, trade policy, sound science ?
http://nor-98.blogspot.com/2010/03/nor-98-atypical-scrapie-atypical-bse.html
TSS
Sunday, December 12, 2010
Saturday, December 11, 2010
Species-barrier-independent prion replication in apparently resistant species
Species-barrier-independent prion replication in apparently resistant species
Pertenece a: UCL University College London Eprints
Descripción: Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host, Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions, Current definitions of the species barrier, which have been based on clinical endpoints, need to be fundamentally reassessed.
Autor(es): Hill, AF - Joiner, S - Linehan, J - Desbruslais, M - Lantos, PL - Collinge, J -
Id.: 52395313
Versión: 1.0
Estado: Final
Palabras clave: TRANSMISSIBLE MINK ENCEPHALOPATHY, CREUTZFELDT - JAKOB - DISEASE, FATAL FAMILIAL INSOMNIA, STRAIN VARIATION, TRANSGENIC MICE, SCRAPIE INFECTIVITY, HAMSTER SCRAPIE, VARIANT CJD, BSE AGENT, PROTEIN -
Tipo de recurso: Article -
Tipo de Interactividad: Expositivo
Nivel de Interactividad: muy bajo
Audiencia: Estudiante - Profesor - Autor -
Estructura: Atomic
Coste: no
Copyright: sí
Requerimientos técnicos: Browser: Any -
Fecha de contribución: 10-dic-2010
Contacto:
http://biblioteca.universia.net/html_bura/ficha/params/id/52395313.html
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html
Sunday, November 21, 2010
Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates and potential Iatrogenic TSE there from
http://creutzfeldt-jakob-disease.blogspot.com/2010/11/preclinical-deposition-of-pathological.html
Sunday, November 28, 2010
Variably protease-sensitive prionopathy in a PRNP codon 129 heterozygous UK patient with co-existing tau, a synuclein and AB pathology
http://prionopathy.blogspot.com/2010/11/variably-protease-sensitive-prionopathy.html
Archive Number 20100312.0803 Published Date 12-MAR-2010 Subject PRO/AH/EDR> Scrapie, atypical, ovine - Australia: (WA) susp
SCRAPIE, ATYPICAL, OVINE - AUSTRALIA: (WESTERN AUSTRALIA) SUSPECTED
*******************************************************************
A ProMED-mail post
ProMED-mail is a program of the International Society for Infectious Diseases
[1] Date: Fri 12 Mar 2010 Source: The Australian [edited]
A West Australian sheep has been found to have signs characteristic of the fatal brain disease atypical scrapie. It comes as Australia faces growing anger from its trade partners over the Rudd government's surprise decision to extend a ban on the importation of beef from countries exposed to mad cow disease for a further 2 years.
Australia's chief veterinarian, Andy Carroll, told the ABC an indicative case of the atypical scrapie had been confirmed but said it posed no risk to human or animal health or the safety of eating meat and animal products.
Nor does atypical scrapie carry the dire trade consequences associated with classical scrapie.
Classical scrapie is in the same transmissible spongiform encephalopathies (TSE) family as BSE, better known as mad cow disease, from which humans can be fatally infected.
Dr Carroll said samples from the sheep's brain were being sent to the World Reference Laboratory in Britain.
Neither atypical scrapie nor classical scrapie has been seen in Australia before, but a sheep in New Zealand tested positive to the atypical form last year [2009].
Atypical scrapie is a relatively recently discovered disease and the common scientific view is that it occurs spontaneously or naturally in very small numbers of older sheep in countries all over the world.
[Byline: Jodie Minus]
-- Communicated by: Sabine Zentis Castleview Pedigree English Longhorns Gut Laach 52385 Nideggen Germany
****** [2] Date: Wed 10 Mar 2010 Source: ABC News (Australian Broadcasting Corporation) [edited]
Animal health authorities are testing a sheep's brain for what could be Australia's 1st case of the disease atypical scrapie.
Although not confirmed, the sheep is thought to be from Western Australia.
This type of scrapie is described as a sporadic degenerative brain condition affecting older sheep, and is not contagious.
Ed Klim, from national advisory group SafeMeat, says a 2nd round of testing is now taking place. "We've been made aware that the Australian Animal Health Laboratory is conducting further routine testing on a sheep sample," he says.
"The disease isn't considered a health risk nor should have any impact on food safety or export markets for sheep meat of live sheep."
Australia's chief veterinarian and WA's Department of Agriculture of Food are both aware of the testing but will not comment.
-- Communicated by: Terry S Singeltary Sr
[Although atypical scrapie is not yet ruled out, it is important to realize this is a type of scrapie that thus far has only tended to appear as a sporadic condition in older animals. Currently it has not been shown to follow the same genetic tendencies for propagation as the usual scrapie.
However, the atypical phenotypic appearance has been shown to be preserved on experimental passage.
Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries, as Australia may join that list. It is likely that this case will be sent to the UK for definitive conformation.
[Ref: M Simmons, T Konold, L Thurston, et al. BMC Veterinary Research 2010, 6:14 [provisional abstract available at]
"Background ----------- "Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. [Many of the neurological diseases can be transmitted by intracerebral inoculation, which causes this moderator to approach intracerebral studies as a tool for study, but not necessarily as a direct indication of transmissibility of natural diseases. - Mod.TG]
"The 1st successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.
"Results -------- "This study demonstrates that atypical scrapie has distinct clinical, pathological, and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.
"Conclusions ------------ Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage."
Lastly, this moderator wishes to thank Terry Singletary for some of his behind the scenes work of providing citations and references for this posting. - Mod.TG]
The HealthMap/ProMED-mail interactive map of Australia is available at. - Sr.Tech.Ed.MJ]
http://www.promedmail.org/pls/otn/f?p=2400:1001:57555::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,81729
Thursday, October 7, 2010
Australia first documented case of atypical scrapie confirmed
First occurrence of atypical scrapie
http://nor-98.blogspot.com/2010/10/australia-first-documented-case-of.html
Archive Number 20101206.4364
Published Date 06-DEC-2010
Subject PRO/AH/EDR> Prion disease update 2010 (11)
PRION DISEASE UPDATE 2010 (11)
http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129
Tuesday, November 30, 2010
Council conclusions on the TSE Road Map 2 A Strategy paper on Transmissible Spongiform Encephalopathies for 2010 - 2015
http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/council-conclusions-on-tse-road-map-2.html
Thursday, November 18, 2010
UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS
http://bse-atypical.blogspot.com/2010/11/united-states-of-america-vs-galen-j.html
Seven main threats for the future linked to prions
The NeuroPrion network has identified seven main threats for the future linked to prions.
First threat
The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.
*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.
Second threat
In small ruminants, a new atypical form of scrapie currently represents up to 50% of detected cases and even involves sheep selected for resistance to classical scrapie. The consequences for animal and human health are still unknown and there may be a potential connection with atypical BSE. These atypical scrapie cases constitute a second threat not envisioned previously which could deeply modify the European approach to prion diseases.
Third threat
The species barrier between human and cattle might be weaker than previously expected and the risk of transmission of prion diseases between different species has been notoriously unpredictable. The emergence of new atypical strains in cattle and sheep together with the spread of chronic wasting disease in cervids renders the understanding of the species barrier critical. This constitutes a third threat not properly envisioned previously that could deeply modify the European approach to prion diseases.
Fourth threat
Prion infectivity has now been detected in blood, urine and milk and this has potential consequences on risk assessments for the environment and food as well as for contamination of surfaces including medical instruments. Furthermore the procedures recommended for decontamination of MBM (Meat and Bone Meal), which are based on older methodologies not designed for this purpose, have turned out to be of very limited efficacy and compromise current policies concerning the reuse of these high value protein supplements (cross-contamination of feed circuits are difficult to control). It should be noted that the destruction or very limited use of MBM is estimated to still cost 1 billion euros per year to the European economy,
whereas other countries, including the US,
Brazil, and Argentine do not have these constraints.
However, many uncertainties remain concerning the guarantees that can be reasonably provided for food and feed safety and scientific knowledge about the causative agents (prions) will continue to evolve. This decontamination and environmental issue is a fourth threat that could modify deeply the European approach to prion diseases.
Fifth threat The precise nature of prions remains elusive. Very recent data indicate that abnormal prion protein (PrPTSE) can be generated from the brains of normal animals, and under some conditions (including contaminated waste water) PrPTSE can be destroyed whereas the BSE infectious titre remains almost unchanged, a finding that underlines the possibility of having BSE without any detectable diagnostic marker. These are just two areas of our incomplete knowledge of the fundamental biology of prions which constitute a fifth threat to the European approach to prion diseases.
Sixth threat The absence of common methods and standardisation in the evaluation of multiple in vivo models with different prion strains and different transgenic mice expressing PrP from different species (different genotypes of cattle, sheep, cervids, etc) renders a complete and comprehensive analysis of all the data generated by the different scientific groups almost impossible. This deeply impairs risk assessment. Moreover, the possibility of generating PrPTSE de novo with new powerful techniques has raised serious questions about their appropriateness for use as blood screening tests. The confusion about an incorrect interpretation of positive results obtained by these methods constitutes a sixth threat to European approach to prion diseases.
Seventh Threat The detection of new or re-emerging prion diseases in animals or humans which could lead to a new crisis in consumer confidence over the relaxation of precautionary measures and surveillance programmes constitutes a seventh threat that could modify the European approach to prion diseases.
http://www.neuroprion.org/en/np-neuroprion.html
Thursday, August 12, 2010
Seven main threats for the future linked to prions
http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html
http://prionpathy.blogspot.com/
Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government's decision to relax import restrictions on beef Final report June 2010
2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49
2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo-has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50
http://www.aph.gov.au/senate/committee/rrat_ctte/mad_cows/report/report.pdf
PLEASE SEE FULL TEXT ;
Sunday, October 3, 2010
Scrapie, Nor-98 atypical Scrapie, and BSE in sheep and goats North America, who's looking ?
http://nor-98.blogspot.com/2010/10/scrapie-nor-98-atypical-scrapie-and-bse.html
ALABAMA MAD COW g-h-BSEalabama
In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156
http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html
Wednesday, July 28, 2010
re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010
http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
http://bse-atypical.blogspot.com/2010/10/experimental-transmission-of-h-type.html
Monday, August 9, 2010
Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?
http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html
PLEASE SEE the dramatic increase in sporadic CJD cases in documented BSE countries, then think, BSE can propagate as nvCJD and sporadic CJD in the lab ;
TOTAL CASES OF SPORADIC CJD (DEATHS) DEFINITE AND PROBABLE CASES
Australia Austria Canada France Germany Italy Netherlands Slovakia Spain Switzerland UK
http://www.eurocjd.ed.ac.uk/sporadic.htm
USA
5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
2010
PLEASE NOTE REFERENCE LINES 5. AND 6.
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010) Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD
1996 & earlier 51 33 28 5 0 0
1997 114 68 59 9 0 0
1998 88 52 44 7 1 0
1999 120 72 64 8 0 0
2000 146 103 89 14 0 0
2001 209 119 109 10 0 0
2002 248 149 125 22 2 0
2003 274 176 137 39 0 0
2004 325 186 164 21 0 1(3)
2005 344 194 157 36 1 0
2006 383 197 166 29 0 2(4)
2007 377 214 187 27 0 0
2008 394 231 204 25 0 0
2009 425 259 216 43 0 0
2010 204 124 85 20 0 0
TOTAL 3702(5) 2177(6) 1834 315 4 3
1 Listed based on the year of death or, if not available, on year of referral;
2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted;
3 Disease acquired in the United Kingdom;
4 Disease was acquired in the United Kingdom in one case and in Saudi Arabia in the other case;
5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
http://www.cjdsurveillance.com/pdf/case-table.pdf
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)
(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)
http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html
Atypical BSE in Cattle
BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.
To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.
snip...see full text ;
http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2
14th ICID International Scientific Exchange Brochure -
Final Abstract Number: ISE.114
Session: International Scientific Exchange
Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009
T. Singeltary
Bacliff, TX, USA
Background:
An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.
Methods:
12 years independent research of available data
Results:
I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.
Conclusion:
I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.
page 114 ;
http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf
The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653
BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein
Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1
1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:
John Collinge, E-mail: j.collinge@prion.ucl.ac.uk
Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002
--------------------------------------------------------------------------------
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.
Keywords:BSE, Creutzfeldt-Jakob disease, prion, transgenic
http://www.nature.com/emboj/journal/v21/n23/abs/7594869a.html
BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein
Emmanuel A. Asante, Jacqueline M. Linehan, Melanie Desbruslais, Susan Joiner, Ian Gowland, Andrew L. Wood, Julie Welch, Andrew F. Hill, Sarah E. Lloyd, Jonathan D.F. Wadsworth, and John Collinge1 MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK 1Corresponding author e-mail: j.collinge@prion.ucl.ac.uk Received August 1, 2002; Revised September 24, 2002; Accepted October 17, 2002.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136957/?tool=pubmed
CJD TEXAS 38 YEAR OLD FEMALE WORKED SLAUGHTERING CATTLE EXPOSED TO BRAIN AND SPINAL CORD MATTER
http://cjdtexas.blogspot.com/2010/03/cjd-texas-38-year-old-female-worked.html
Archive Number 20100405.1091 Published Date 05-APR-2010
Subject PRO/AH/EDR> Prion disease update 1010 (04)
snip...
[Terry S. Singeltary Sr. has added the following comment:
"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.
The key word here is diverse. What does diverse mean? If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"
http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101
Sunday, July 11, 2010
CJD or prion disease 2 CASES McLennan County Texas population 230,213 both cases in their 40s
http://creutzfeldt-jakob-disease.blogspot.com/2010/07/cjd-2-cases-mclennan-county-texas.html
Tuesday, June 1, 2010
USA cases of dpCJD rising with 24 cases so far in 2010
http://cjdtexas.blogspot.com/2010/06/usa-cases-of-dpcjd-rising-with-24-cases.html
Friday, February 05, 2010
New Variant Creutzfelt Jakob Disease case reports United States 2010 A Review
http://vcjd.blogspot.com/2010/02/new-variant-creutzfelt-jakob-disease.html
Saturday, January 2, 2010
Human Prion Diseases in the United States January 1, 2010 ***FINAL***
http://prionunitusaupdate2008.blogspot.com/2010/01/human-prion-diseases-in-united-states.html
my comments to PLosone here ;
http://www.plosone.org/annotation/listThread.action?inReplyTo=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd&root=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd
HOW many of you recieved a written CJD Questionnaire asking real questions pertaining to route and source (and there are many here in North America) ?
IS every case getting a cjd questionnaire asking real questions ???
Friday, November 30, 2007
CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION USA PRION UNIT
http://cjdquestionnaire.blogspot.com/
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)
http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html
Saturday, June 13, 2009
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009
http://cjdusa.blogspot.com/2009/06/monitoring-occurrence-of-emerging-forms.html
Meeting of the Transmissible Spongiform Encephalopathies Committee On June 12, 2009 (Singeltary submission)
http://tseac.blogspot.com/2009/05/meeting-of-transmissible-spongiform.html
Monday, November 22, 2010
Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control
REVIEW ARTICLES
http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/atypical-transmissible-spongiform.html
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep
http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html
Wednesday, November 17, 2010
CWD Update 98 November 10, 2010
http://chronic-wasting-disease.blogspot.com/2010/11/cwd-update-98-november-10-2010.html
JOURNAL OF NEUROLOGY
MARCH 26, 2003
Send Post-Publication Peer Review to journal:
Re: RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob
disease in the United States
Email Terry S. Singeltary:
flounder@wt.net
http://www.neurology.org/cgi/eletters/60/2/176#535
Newsdesk The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003 doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI
Tracking spongiform encephalopathies in North America
Xavier Bosch
“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.” 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)—the relative of mad cow disease seen among deer and elk in the USA. Although his feverish…
http://linkinghub.elsevier.com/retrieve/pii/S1473309903007151
http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(03)00715-1/fulltext
http://www.mdconsult.com/das/article/body/180784492-2/jorg=journal&source=&sp=13979213&sid=0/N/368742/1.html?issn=14733099
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT
http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
2 January 2000
British Medical Journal
U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well
http://www.bmj.com/cgi/eletters/320/7226/8/b#6117
15 November 1999
British Medical Journal
vCJD in the USA * BSE in U.S.
http://www.bmj.com/cgi/eletters/319/7220/1312/b#5406
THE PATHOLOGICAL PROTEIN
BY Philip Yam
Yam Philip Yam News Editor Scientific American www.sciam.com
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
CHAPTER 14
Laying Odds
Are prion diseases more prevalent than we thought?
Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn’t think bovine spongiform encephalopathy was a zoonosis—an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?
Revisiting Sporadic CJD
It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.
Singeltary has similar inclinations. ...
http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=the+pathological+protein+laying+odds+It%E2%80%99s+not+hard+to+get+Terry+Singeltary+going&source=bl&ots=um0PFAZSZD&sig=JWaGR7M7-1WeAr2qAXq8D6J_jak&hl=en&ei=MhtjS8jMJM2ztgeFoa2iBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAcQ6AEwAA#v=onepage&q=&f=false
http://www.springerlink.com/content/r2k2622661473336/fulltext.pdf?page=1
http://www.thepathologicalprotein.com/
DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv: http://service.spiegel.de/digas/find?DID=18578755
"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.
Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.
"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...
http://www.spiegel.de/spiegel/print/d-18578755.html
http://wissen.spiegel.de/wissen/image/show.html?did=18578755&aref=image024/E0108/SCSP200100901440145.pdf&thumb=false
http://service.spiegel.de/digas/servlet/find/DID=18578755
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?
28 Mar 01
Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.
As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.
Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.
http://www.newscientist.com/article/mg16922840.300-like-lambs-to-the-slaughter.html
Sunday, August 09, 2009
CJD...Straight talk with...James Ironside...and...Terry Singeltary... 2009
http://creutzfeldt-jakob-disease.blogspot.com/2009/08/cjdstraight-talk-withjames.html
Tuesday, August 18, 2009
BSE-The Untold Story - joe gibbs and singeltary 1999 - 2009
http://madcowusda.blogspot.com/2009/08/bse-untold-story-joe-gibbs-and.html
Sunday, December 12, 2010
Predominant Involvement of the Cerebellum in Guinea Pigs Infected with Bovine Spongiform Encephalopathy (BSE)
Journal of Comparative Pathology Article in Press
http://creutzfeldt-jakob-disease.blogspot.com/2010/12/predominant-involvement-of-cerebellum.html
TSS
Pertenece a: UCL University College London Eprints
Descripción: Transmission of prions between mammalian species is thought to be limited by a "species barrier," which depends on differences in the primary structure of prion proteins in the infecting inoculum and the host, Here we demonstrate that a strain of hamster prions thought to be nonpathogenic for conventional mice leads to prion replication to high levels in such mice but without causing clinical disease. Prions pathogenic in both mice and hamsters are produced. These results demonstrate the existence of subclinical forms of prion infection with important public health implications, both with respect to iatrogenic transmission from apparently healthy humans and dietary exposure to cattle and other species exposed to bovine spongiform encephalopathy prions, Current definitions of the species barrier, which have been based on clinical endpoints, need to be fundamentally reassessed.
Autor(es): Hill, AF - Joiner, S - Linehan, J - Desbruslais, M - Lantos, PL - Collinge, J -
Id.: 52395313
Versión: 1.0
Estado: Final
Palabras clave: TRANSMISSIBLE MINK ENCEPHALOPATHY, CREUTZFELDT - JAKOB - DISEASE, FATAL FAMILIAL INSOMNIA, STRAIN VARIATION, TRANSGENIC MICE, SCRAPIE INFECTIVITY, HAMSTER SCRAPIE, VARIANT CJD, BSE AGENT, PROTEIN -
Tipo de recurso: Article -
Tipo de Interactividad: Expositivo
Nivel de Interactividad: muy bajo
Audiencia: Estudiante - Profesor - Autor -
Estructura: Atomic
Coste: no
Copyright: sí
Requerimientos técnicos: Browser: Any -
Fecha de contribución: 10-dic-2010
Contacto:
http://biblioteca.universia.net/html_bura/ficha/params/id/52395313.html
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html
Sunday, November 21, 2010
Preclinical Deposition of Pathological Prion Protein in Muscle of Experimentally Infected Primates and potential Iatrogenic TSE there from
http://creutzfeldt-jakob-disease.blogspot.com/2010/11/preclinical-deposition-of-pathological.html
Sunday, November 28, 2010
Variably protease-sensitive prionopathy in a PRNP codon 129 heterozygous UK patient with co-existing tau, a synuclein and AB pathology
http://prionopathy.blogspot.com/2010/11/variably-protease-sensitive-prionopathy.html
Archive Number 20100312.0803 Published Date 12-MAR-2010 Subject PRO/AH/EDR> Scrapie, atypical, ovine - Australia: (WA) susp
SCRAPIE, ATYPICAL, OVINE - AUSTRALIA: (WESTERN AUSTRALIA) SUSPECTED
*******************************************************************
A ProMED-mail post
ProMED-mail is a program of the International Society for Infectious Diseases
[1] Date: Fri 12 Mar 2010 Source: The Australian [edited]
A West Australian sheep has been found to have signs characteristic of the fatal brain disease atypical scrapie. It comes as Australia faces growing anger from its trade partners over the Rudd government's surprise decision to extend a ban on the importation of beef from countries exposed to mad cow disease for a further 2 years.
Australia's chief veterinarian, Andy Carroll, told the ABC an indicative case of the atypical scrapie had been confirmed but said it posed no risk to human or animal health or the safety of eating meat and animal products.
Nor does atypical scrapie carry the dire trade consequences associated with classical scrapie.
Classical scrapie is in the same transmissible spongiform encephalopathies (TSE) family as BSE, better known as mad cow disease, from which humans can be fatally infected.
Dr Carroll said samples from the sheep's brain were being sent to the World Reference Laboratory in Britain.
Neither atypical scrapie nor classical scrapie has been seen in Australia before, but a sheep in New Zealand tested positive to the atypical form last year [2009].
Atypical scrapie is a relatively recently discovered disease and the common scientific view is that it occurs spontaneously or naturally in very small numbers of older sheep in countries all over the world.
[Byline: Jodie Minus]
-- Communicated by: Sabine Zentis Castleview Pedigree English Longhorns Gut Laach 52385 Nideggen Germany
****** [2] Date: Wed 10 Mar 2010 Source: ABC News (Australian Broadcasting Corporation) [edited]
Animal health authorities are testing a sheep's brain for what could be Australia's 1st case of the disease atypical scrapie.
Although not confirmed, the sheep is thought to be from Western Australia.
This type of scrapie is described as a sporadic degenerative brain condition affecting older sheep, and is not contagious.
Ed Klim, from national advisory group SafeMeat, says a 2nd round of testing is now taking place. "We've been made aware that the Australian Animal Health Laboratory is conducting further routine testing on a sheep sample," he says.
"The disease isn't considered a health risk nor should have any impact on food safety or export markets for sheep meat of live sheep."
Australia's chief veterinarian and WA's Department of Agriculture of Food are both aware of the testing but will not comment.
-- Communicated by: Terry S Singeltary Sr
[Although atypical scrapie is not yet ruled out, it is important to realize this is a type of scrapie that thus far has only tended to appear as a sporadic condition in older animals. Currently it has not been shown to follow the same genetic tendencies for propagation as the usual scrapie.
However, the atypical phenotypic appearance has been shown to be preserved on experimental passage.
Atypical scrapie was first identified in Norwegian sheep in 1998 and has subsequently been identified in many countries, as Australia may join that list. It is likely that this case will be sent to the UK for definitive conformation.
[Ref: M Simmons, T Konold, L Thurston, et al. BMC Veterinary Research 2010, 6:14 [provisional abstract available at
"Background ----------- "Retrospective studies have identified cases predating the initial identification of this form of scrapie, and epidemiological studies have indicated that it does not conform to the behaviour of an infectious disease, giving rise to the hypothesis that it represents spontaneous disease. However, atypical scrapie isolates have been shown to be infectious experimentally, through intracerebral inoculation in transgenic mice and sheep. [Many of the neurological diseases can be transmitted by intracerebral inoculation, which causes this moderator to approach intracerebral studies as a tool for study, but not necessarily as a direct indication of transmissibility of natural diseases. - Mod.TG]
"The 1st successful challenge of a sheep with 'field' atypical scrapie from an homologous donor sheep was reported in 2007.
"Results -------- "This study demonstrates that atypical scrapie has distinct clinical, pathological, and biochemical characteristics which are maintained on transmission and sub-passage, and which are distinct from other strains of transmissible spongiform encephalopathies in the same host genotype.
"Conclusions ------------ Atypical scrapie is consistently transmissible within AHQ homozygous sheep, and the disease phenotype is preserved on sub-passage."
Lastly, this moderator wishes to thank Terry Singletary for some of his behind the scenes work of providing citations and references for this posting. - Mod.TG]
The HealthMap/ProMED-mail interactive map of Australia is available at
http://www.promedmail.org/pls/otn/f?p=2400:1001:57555::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,81729
Thursday, October 7, 2010
Australia first documented case of atypical scrapie confirmed
First occurrence of atypical scrapie
http://nor-98.blogspot.com/2010/10/australia-first-documented-case-of.html
Archive Number 20101206.4364
Published Date 06-DEC-2010
Subject PRO/AH/EDR> Prion disease update 2010 (11)
PRION DISEASE UPDATE 2010 (11)
http://www.promedmail.org/pls/apex/f?p=2400:1001:5492868805159684::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,86129
Tuesday, November 30, 2010
Council conclusions on the TSE Road Map 2 A Strategy paper on Transmissible Spongiform Encephalopathies for 2010 - 2015
http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/council-conclusions-on-tse-road-map-2.html
Thursday, November 18, 2010
UNITED STATES OF AMERICA VS GALEN J. NIEHUES FAKED MAD COW FEED TEST ON 92 BSE INSPECTION REPORTS FOR APPROXIMATELY 100 CATTLE OPERATIONS
http://bse-atypical.blogspot.com/2010/11/united-states-of-america-vs-galen-j.html
Seven main threats for the future linked to prions
The NeuroPrion network has identified seven main threats for the future linked to prions.
First threat
The TSE road map defining the evolution of European policy for protection against prion diseases is based on a certain numbers of hypotheses some of which may turn out to be erroneous. In particular, a form of BSE (called atypical Bovine Spongiform Encephalopathy), recently identified by systematic testing in aged cattle without clinical signs, may be the origin of classical BSE and thus potentially constitute a reservoir, which may be impossible to eradicate if a sporadic origin is confirmed.
*** Also, a link is suspected between atypical BSE and some apparently sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases constitute an unforeseen first threat that could sharply modify the European approach to prion diseases.
Second threat
In small ruminants, a new atypical form of scrapie currently represents up to 50% of detected cases and even involves sheep selected for resistance to classical scrapie. The consequences for animal and human health are still unknown and there may be a potential connection with atypical BSE. These atypical scrapie cases constitute a second threat not envisioned previously which could deeply modify the European approach to prion diseases.
Third threat
The species barrier between human and cattle might be weaker than previously expected and the risk of transmission of prion diseases between different species has been notoriously unpredictable. The emergence of new atypical strains in cattle and sheep together with the spread of chronic wasting disease in cervids renders the understanding of the species barrier critical. This constitutes a third threat not properly envisioned previously that could deeply modify the European approach to prion diseases.
Fourth threat
Prion infectivity has now been detected in blood, urine and milk and this has potential consequences on risk assessments for the environment and food as well as for contamination of surfaces including medical instruments. Furthermore the procedures recommended for decontamination of MBM (Meat and Bone Meal), which are based on older methodologies not designed for this purpose, have turned out to be of very limited efficacy and compromise current policies concerning the reuse of these high value protein supplements (cross-contamination of feed circuits are difficult to control). It should be noted that the destruction or very limited use of MBM is estimated to still cost 1 billion euros per year to the European economy,
whereas other countries, including the US,
Brazil, and Argentine do not have these constraints.
However, many uncertainties remain concerning the guarantees that can be reasonably provided for food and feed safety and scientific knowledge about the causative agents (prions) will continue to evolve. This decontamination and environmental issue is a fourth threat that could modify deeply the European approach to prion diseases.
Fifth threat The precise nature of prions remains elusive. Very recent data indicate that abnormal prion protein (PrPTSE) can be generated from the brains of normal animals, and under some conditions (including contaminated waste water) PrPTSE can be destroyed whereas the BSE infectious titre remains almost unchanged, a finding that underlines the possibility of having BSE without any detectable diagnostic marker. These are just two areas of our incomplete knowledge of the fundamental biology of prions which constitute a fifth threat to the European approach to prion diseases.
Sixth threat The absence of common methods and standardisation in the evaluation of multiple in vivo models with different prion strains and different transgenic mice expressing PrP from different species (different genotypes of cattle, sheep, cervids, etc) renders a complete and comprehensive analysis of all the data generated by the different scientific groups almost impossible. This deeply impairs risk assessment. Moreover, the possibility of generating PrPTSE de novo with new powerful techniques has raised serious questions about their appropriateness for use as blood screening tests. The confusion about an incorrect interpretation of positive results obtained by these methods constitutes a sixth threat to European approach to prion diseases.
Seventh Threat The detection of new or re-emerging prion diseases in animals or humans which could lead to a new crisis in consumer confidence over the relaxation of precautionary measures and surveillance programmes constitutes a seventh threat that could modify the European approach to prion diseases.
http://www.neuroprion.org/en/np-neuroprion.html
Thursday, August 12, 2010
Seven main threats for the future linked to prions
http://prionpathy.blogspot.com/2010/08/seven-main-threats-for-future-linked-to.html
http://prionpathy.blogspot.com/
Rural and Regional Affairs and Transport References Committee The possible impacts and consequences for public health, trade and agriculture of the Government's decision to relax import restrictions on beef Final report June 2010
2.65 At its hearing on 14 May 2010, the committee heard evidence from Dr Alan Fahey who has recently submitted a thesis on the clinical neuropsychiatric, epidemiological and diagnostic features of Creutzfeldt-Jakob disease.48 Dr Fahey told the committee of his concerns regarding the lengthy incubation period for transmissible spongiform encephalopathies, the inadequacy of current tests and the limited nature of our current understanding of this group of diseases.49
2.66 Dr Fahey also told the committee that in the last two years a link has been established between forms of atypical CJD and atypical BSE. Dr Fahey said that: They now believe that those atypical BSEs overseas are in fact causing sporadic Creutzfeldt-Jakob disease. They were not sure if it was due to mad sheep disease or a different form. If you look in the textbooks it looks like this is just arising by itself. But in my research I have a summary of a document which states that there has never been any proof that sporadic Creutzfeldt-Jakob disease has arisen de novo-has arisen of itself. There is no proof of that. The recent research is that in fact it is due to atypical forms of mad cow disease which have been found across Europe, have been found in America and have been found in Asia. These atypical forms of mad cow disease typically have even longer incubation periods than the classical mad cow disease.50
http://www.aph.gov.au/senate/committee/rrat_ctte/mad_cows/report/report.pdf
PLEASE SEE FULL TEXT ;
Sunday, October 3, 2010
Scrapie, Nor-98 atypical Scrapie, and BSE in sheep and goats North America, who's looking ?
http://nor-98.blogspot.com/2010/10/scrapie-nor-98-atypical-scrapie-and-bse.html
ALABAMA MAD COW g-h-BSEalabama
In this study, we identified a novel mutation in the bovine prion protein gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United States of America. This mutation is identical to the E200K pathogenic mutation found in humans with a genetic form of CJD. This finding represents the first report of a confirmed case of BSE with a potential pathogenic mutation within the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K mutation.
http://www.plospathogens.org/article/info%3Adoi%2F10.1371%2Fjournal.ppat.1000156
http://www.plospathogens.org/article/fetchObjectAttachment.action?uri=info%3Adoi%2F10.1371%2Fjournal.ppat.1000156&representation=PDF
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
http://prionpathy.blogspot.com/2010/08/bse-case-associated-with-prion-protein.html
Wednesday, July 28, 2010
re-Freedom of Information Act Project Number 3625-32000-086-05, Study of Atypical BSE UPDATE July 28, 2010
http://bse-atypical.blogspot.com/2010/07/re-freedom-of-information-act-project.html
Thursday, October 07, 2010
Experimental Transmission of H-type Bovine Spongiform Encephalopathy to Bovinized Transgenic Mice
http://bse-atypical.blogspot.com/2010/10/experimental-transmission-of-h-type.html
Monday, August 9, 2010
Variably protease-sensitive prionopathy: A new sporadic disease of the prion protein or just more PRIONBALONEY ?
http://prionunitusaupdate2008.blogspot.com/2010/08/variably-protease-sensitive-prionopathy.html
PLEASE SEE the dramatic increase in sporadic CJD cases in documented BSE countries, then think, BSE can propagate as nvCJD and sporadic CJD in the lab ;
TOTAL CASES OF SPORADIC CJD (DEATHS) DEFINITE AND PROBABLE CASES
Australia Austria Canada France Germany Italy Netherlands Slovakia Spain Switzerland UK
http://www.eurocjd.ed.ac.uk/sporadic.htm
USA
5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
2010
PLEASE NOTE REFERENCE LINES 5. AND 6.
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010) Year Total Referrals2 Prion Disease Sporadic Familial Iatrogenic vCJD
1996 & earlier 51 33 28 5 0 0
1997 114 68 59 9 0 0
1998 88 52 44 7 1 0
1999 120 72 64 8 0 0
2000 146 103 89 14 0 0
2001 209 119 109 10 0 0
2002 248 149 125 22 2 0
2003 274 176 137 39 0 0
2004 325 186 164 21 0 1(3)
2005 344 194 157 36 1 0
2006 383 197 166 29 0 2(4)
2007 377 214 187 27 0 0
2008 394 231 204 25 0 0
2009 425 259 216 43 0 0
2010 204 124 85 20 0 0
TOTAL 3702(5) 2177(6) 1834 315 4 3
1 Listed based on the year of death or, if not available, on year of referral;
2 Cases with suspected prion disease for which brain tissue and/or blood (in familial cases) were submitted;
3 Disease acquired in the United Kingdom;
4 Disease was acquired in the United Kingdom in one case and in Saudi Arabia in the other case;
5 Includes 16 cases in which the diagnosis is pending, and 18 inconclusive cases;
6 Includes 21 (19 from 2010) cases with type determination pending in which the diagnosis of vCJD has been excluded.
http://www.cjdsurveillance.com/pdf/case-table.pdf
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)
(please watch and listen to the video and the scientist speaking about atypical BSE and sporadic CJD and listen to Professor Aguzzi)
http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html
Atypical BSE in Cattle
BSE has been linked to the human disease variant Creutzfeldt Jakob Disease (vCJD). The known exposure pathways for humans contracting vCJD are through the consumption of beef and beef products contaminated by the BSE agent and through blood transfusions. However, recent scientific evidence suggests that the BSE agent may play a role in the development of other forms of human prion diseases as well. These studies suggest that classical type of BSE may cause type 2 sporadic CJD and that H-type atypical BSE is connected with a familial form of CJD.
To date the OIE/WAHO assumes that the human and animal health standards set out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE which include the H-type and L-type atypical forms. This assumption is scientifically not completely justified and accumulating evidence suggests that this may in fact not be the case. Molecular characterization and the spatial distribution pattern of histopathologic lesions and immunohistochemistry (IHC) signals are used to identify and characterize atypical BSE. Both the L-type and H-type atypical cases display significant differences in the conformation and spatial accumulation of the disease associated prion protein (PrPSc) in brains of afflicted cattle. Transmission studies in bovine transgenic and wild type mouse models support that the atypical BSE types might be unique strains because they have different incubation times and lesion profiles when compared to C-type BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian hamster the resulting molecular fingerprint had changed, either in the first or a subsequent passage, from L-type into C-type BSE. In addition, non-human primates are specifically susceptible for atypical BSE as demonstrated by an approximately 50% shortened incubation time for L-type BSE as compared to C-type. Considering the current scientific information available, it cannot be assumed that these different BSE types pose the same human health risks as C-type BSE or that these risks are mitigated by the same protective measures.
snip...see full text ;
http://www.prionetcanada.ca/detail.aspx?menu=5&dt=293380&app=93&cat1=387&tp=20&lk=no&cat2
14th ICID International Scientific Exchange Brochure -
Final Abstract Number: ISE.114
Session: International Scientific Exchange
Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009
T. Singeltary
Bacliff, TX, USA
Background:
An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.
Methods:
12 years independent research of available data
Results:
I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.
Conclusion:
I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries. I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.
page 114 ;
http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf
The EMBO Journal (2002) 21, 6358 - 6366 doi:10.1093/emboj/cdf653
BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein
Emmanuel A. Asante1, Jacqueline M. Linehan1, Melanie Desbruslais1, Susan Joiner1, Ian Gowland1, Andrew L. Wood1, Julie Welch1, Andrew F. Hill1, Sarah E. Lloyd1, Jonathan D.F. Wadsworth1 and John Collinge1
1.MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK Correspondence to:
John Collinge, E-mail: j.collinge@prion.ucl.ac.uk
Received 1 August 2002; Accepted 17 October 2002; Revised 24 September 2002
--------------------------------------------------------------------------------
Abstract
Variant Creutzfeldt-Jakob disease (vCJD) has been recognized to date only in individuals homozygous for methionine at PRNP codon 129. Here we show that transgenic mice expressing human PrP methionine 129, inoculated with either bovine spongiform encephalopathy (BSE) or variant CJD prions, may develop the neuropathological and molecular phenotype of vCJD, consistent with these diseases being caused by the same prion strain. Surprisingly, however, BSE transmission to these transgenic mice, in addition to producing a vCJD-like phenotype, can also result in a distinct molecular phenotype that is indistinguishable from that of sporadic CJD with PrPSc type 2. These data suggest that more than one BSE-derived prion strain might infect humans; it is therefore possible that some patients with a phenotype consistent with sporadic CJD may have a disease arising from BSE exposure.
Keywords:BSE, Creutzfeldt-Jakob disease, prion, transgenic
http://www.nature.com/emboj/journal/v21/n23/abs/7594869a.html
BSE prions propagate as either variant CJD-like or sporadic CJD-like prion strains in transgenic mice expressing human prion protein
Emmanuel A. Asante, Jacqueline M. Linehan, Melanie Desbruslais, Susan Joiner, Ian Gowland, Andrew L. Wood, Julie Welch, Andrew F. Hill, Sarah E. Lloyd, Jonathan D.F. Wadsworth, and John Collinge1 MRC Prion Unit and Department of Neurodegenerative Disease, Institute of Neurology, University College, Queen Square, London WC1N 3BG, UK 1Corresponding author e-mail: j.collinge@prion.ucl.ac.uk Received August 1, 2002; Revised September 24, 2002; Accepted October 17, 2002.
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC136957/?tool=pubmed
CJD TEXAS 38 YEAR OLD FEMALE WORKED SLAUGHTERING CATTLE EXPOSED TO BRAIN AND SPINAL CORD MATTER
http://cjdtexas.blogspot.com/2010/03/cjd-texas-38-year-old-female-worked.html
Archive Number 20100405.1091 Published Date 05-APR-2010
Subject PRO/AH/EDR> Prion disease update 1010 (04)
snip...
[Terry S. Singeltary Sr. has added the following comment:
"According to the World Health Organisation, the future public health threat of vCJD in the UK and Europe and potentially the rest of the world is of concern and currently unquantifiable. However, the possibility of a significant and geographically diverse vCJD epidemic occurring over the next few decades cannot be dismissed.
The key word here is diverse. What does diverse mean? If USA scrapie transmitted to USA bovine does not produce pathology as the UK c-BSE, then why would CJD from there look like UK vCJD?"
http://www.promedmail.org/pls/apex/f?p=2400:1001:568933508083034::NO::F2400_P1001_BACK_PAGE,F2400_P1001_PUB_MAIL_ID:1000,82101
Sunday, July 11, 2010
CJD or prion disease 2 CASES McLennan County Texas population 230,213 both cases in their 40s
http://creutzfeldt-jakob-disease.blogspot.com/2010/07/cjd-2-cases-mclennan-county-texas.html
Tuesday, June 1, 2010
USA cases of dpCJD rising with 24 cases so far in 2010
http://cjdtexas.blogspot.com/2010/06/usa-cases-of-dpcjd-rising-with-24-cases.html
Friday, February 05, 2010
New Variant Creutzfelt Jakob Disease case reports United States 2010 A Review
http://vcjd.blogspot.com/2010/02/new-variant-creutzfelt-jakob-disease.html
Saturday, January 2, 2010
Human Prion Diseases in the United States January 1, 2010 ***FINAL***
http://prionunitusaupdate2008.blogspot.com/2010/01/human-prion-diseases-in-united-states.html
my comments to PLosone here ;
http://www.plosone.org/annotation/listThread.action?inReplyTo=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd&root=info%3Adoi%2F10.1371%2Fannotation%2F04ce2b24-613d-46e6-9802-4131e2bfa6fd
HOW many of you recieved a written CJD Questionnaire asking real questions pertaining to route and source (and there are many here in North America) ?
IS every case getting a cjd questionnaire asking real questions ???
Friday, November 30, 2007
CJD QUESTIONNAIRE USA CWRU AND CJD FOUNDATION USA PRION UNIT
http://cjdquestionnaire.blogspot.com/
Monday, August 9, 2010
National Prion Disease Pathology Surveillance Center Cases Examined (July 31, 2010)
http://prionunitusaupdate2008.blogspot.com/2010/08/national-prion-disease-pathology.html
Saturday, June 13, 2009
Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob disease in the United States 2003 revisited 2009
http://cjdusa.blogspot.com/2009/06/monitoring-occurrence-of-emerging-forms.html
Meeting of the Transmissible Spongiform Encephalopathies Committee On June 12, 2009 (Singeltary submission)
http://tseac.blogspot.com/2009/05/meeting-of-transmissible-spongiform.html
Monday, November 22, 2010
Atypical transmissible spongiform encephalopathies in ruminants: a challenge for disease surveillance and control
REVIEW ARTICLES
http://transmissiblespongiformencephalopathy.blogspot.com/2010/11/atypical-transmissible-spongiform.html
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform encephalopathy following passage in sheep
http://bse-atypical.blogspot.com/2010/11/increased-susceptibility-of-human-prp.html
Wednesday, November 17, 2010
CWD Update 98 November 10, 2010
http://chronic-wasting-disease.blogspot.com/2010/11/cwd-update-98-november-10-2010.html
JOURNAL OF NEUROLOGY
MARCH 26, 2003
Send Post-Publication Peer Review to journal:
Re: RE-Monitoring the occurrence of emerging forms of Creutzfeldt-Jakob
disease in the United States
Email Terry S. Singeltary:
flounder@wt.net
http://www.neurology.org/cgi/eletters/60/2/176#535
Newsdesk The Lancet Infectious Diseases, Volume 3, Issue 8, Page 463, August 2003 doi:10.1016/S1473-3099(03)00715-1Cite or Link Using DOI
Tracking spongiform encephalopathies in North America
Xavier Bosch
“My name is Terry S Singeltary Sr, and I live in Bacliff, Texas. I lost my mom to hvCJD (Heidenhain variant CJD) and have been searching for answers ever since. What I have found is that we have not been told the truth. CWD in deer and elk is a small portion of a much bigger problem.” 49-year-old Singeltary is one of a number of people who have remained largely unsatisfied after being told that a close relative died from a rapidly progressive dementia compatible with spontaneous Creutzfeldt-Jakob disease (CJD). So he decided to gather hundreds of documents on transmissible spongiform encephalopathies (TSE) and realised that if Britons could get variant CJD from bovine spongiform encephalopathy (BSE), Americans might get a similar disorder from chronic wasting disease (CWD)—the relative of mad cow disease seen among deer and elk in the USA. Although his feverish…
http://linkinghub.elsevier.com/retrieve/pii/S1473309903007151
http://www.thelancet.com/journals/laninf/article/PIIS1473-3099(03)00715-1/fulltext
http://www.mdconsult.com/das/article/body/180784492-2/jorg=journal&source=&sp=13979213&sid=0/N/368742/1.html?issn=14733099
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA
Diagnosis and Reporting of Creutzfeldt-Jakob Disease
To the Editor: In their Research Letter, Dr Gibbons and colleagues1 reported that the annual US death rate due to Creutzfeldt-Jakob disease (CJD) has been stable since 1985. These estimates, however, are based only on reported cases, and do not include misdiagnosed or preclinical cases. It seems to me that misdiagnosis alone would drastically change these figures. An unknown number of persons with a diagnosis of Alzheimer disease in fact may have CJD, although only a small number of these patients receive the postmortem examination necessary to make this diagnosis. Furthermore, only a few states have made CJD reportable. Human and animal transmissible spongiform encephalopathies should be reportable nationwide and internationally.
Terry S. Singeltary, Sr Bacliff, Tex
1. Gibbons RV, Holman RC, Belay ED, Schonberger LB. Creutzfeldt-Jakob disease in the United States: 1979-1998. JAMA. 2000;284:2322-2323. FREE FULL TEXT
http://jama.ama-assn.org/cgi/content/extract/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
http://jama.ama-assn.org/cgi/content/full/285/6/733?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=singeltary&searchid=1&FIRSTINDEX=0&resourcetype=HWCIT
2 January 2000
British Medical Journal
U.S. Scientist should be concerned with a CJD epidemic in the U.S., as well
http://www.bmj.com/cgi/eletters/320/7226/8/b#6117
15 November 1999
British Medical Journal
vCJD in the USA * BSE in U.S.
http://www.bmj.com/cgi/eletters/319/7220/1312/b#5406
THE PATHOLOGICAL PROTEIN
BY Philip Yam
Yam Philip Yam News Editor Scientific American www.sciam.com
Answering critics like Terry Singeltary, who feels that the U.S. under- counts CJD, Schonberger conceded that the current surveillance system has errors but stated that most of the errors will be confined to the older population.
CHAPTER 14
Laying Odds
Are prion diseases more prevalent than we thought?
Researchers and government officials badly underestimated the threat that mad cow disease posed when it first appeared in Britain. They didn’t think bovine spongiform encephalopathy was a zoonosis—an animal disease that can sicken people. The 1996 news that BSE could infect humans with a new form of Creutzfeldt-Jakob disease stunned the world. It also got some biomedical researchers wondering whether sporadic CJD may really be a manifestation of a zoonotic sickness. Might it be caused by the ingestion of prions, as variant CJD is?
Revisiting Sporadic CJD
It’s not hard to get Terry Singeltary going. “I have my conspiracy theories,” admitted the 49-year-old Texan.1 Singeltary is probably the nation’s most relentless consumer advocate when it comes to issues in prion diseases. He has helped families learn about the sickness and coordinated efforts with support groups such as CJD Voice and the CJD Foundation. He has also connected with others who are critical of the American way of handling the threat of prion diseases. Such critics include Consumers Union’s Michael Hansen, journalist John Stauber, and Thomas Pringle, who used to run the voluminous www.madcow. org Web site. These three lend their expertise to newspaper and magazine stories about prion diseases, and they usually argue that prions represent more of a threat than people realize, and that the government has responded poorly to the dangers because it is more concerned about protecting the beef industry than people's health.
Singeltary has similar inclinations. ...
http://books.google.com/books?id=ePbrQNFrHtoC&pg=PA223&lpg=PA223&dq=the+pathological+protein+laying+odds+It%E2%80%99s+not+hard+to+get+Terry+Singeltary+going&source=bl&ots=um0PFAZSZD&sig=JWaGR7M7-1WeAr2qAXq8D6J_jak&hl=en&ei=MhtjS8jMJM2ztgeFoa2iBg&sa=X&oi=book_result&ct=result&resnum=1&ved=0CAcQ6AEwAA#v=onepage&q=&f=false
http://www.springerlink.com/content/r2k2622661473336/fulltext.pdf?page=1
http://www.thepathologicalprotein.com/
DER SPIEGEL (9/2001) - 24.02.2001 (9397 Zeichen) USA: Loch in der Mauer Die BSE-Angst erreicht Amerika: Trotz strikter Auflagen gelangte in Texas verbotenes Tiermehl ins Rinderfutter - die Kontrollen der Aufsichtsbehördensind lax.Link auf diesen Artikel im Archiv: http://service.spiegel.de/digas/find?DID=18578755
"Löcher wie in einem Schweizer Käse" hat auch Terry Singeltary im Regelwerk der FDA ausgemacht. Der Texaner kam auf einem tragischen Umweg zu dem Thema: Nachdem seine Mutter 1997 binnen weniger Wochen an der Creutzfeldt-Jakob-Krankheit gestorben war, versuchte er, die Ursachen der Infektion aufzuspüren. Er klagte auf die Herausgabe von Regierungsdokumenten und arbeitete sich durch Fachliteratur; heute ist er überzeugt, dass seine Mutter durch die stetige Einnahme von angeblich kräftigenden Mitteln erkrankte, in denen - völlig legal - Anteile aus Rinderprodukten enthalten sind.
Von der Fachwelt wurde Singeltary lange als versponnener Außenseiter belächelt. Doch mittlerweile sorgen sich auch Experten, dass ausgerechnet diese verschreibungsfreien Wundercocktails zur Stärkung von Intelligenz, Immunsystem oder Libido von den Importbeschränkungen ausgenommen sind. Dabei enthalten die Pillen und Ampullen, die in Supermärkten verkauft werden, exotische Mixturen aus Rinderaugen; dazu Extrakte von Hypophyse oder Kälberföten, Prostata, Lymphknoten und gefriergetrocknetem Schweinemagen. In die USA hereingelassen werden auch Blut, Fett, Gelatine und Samen. Diese Stoffe tauchen noch immer in US-Produkten auf, inklusive Medizin und Kosmetika. Selbst in Impfstoffen waren möglicherweise gefährliche Rinderprodukte enthalten. Zwar fordert die FDA schon seit acht Jahren die US-Pharmaindustrie auf, keine Stoffe aus Ländern zu benutzen, in denen die Gefahr einer BSE-Infizierung besteht. Aber erst kürzlich verpflichteten sich fünf Unternehmen, darunter Branchenführer wie GlaxoSmithKline, Aventis und American Home Products, ihre Seren nur noch aus unverdächtigem Material herzustellen.
"Its as full of holes as Swiss Cheese" says Terry Singeltary of the FDA regulations. ...
http://www.spiegel.de/spiegel/print/d-18578755.html
http://wissen.spiegel.de/wissen/image/show.html?did=18578755&aref=image024/E0108/SCSP200100901440145.pdf&thumb=false
http://service.spiegel.de/digas/servlet/find/DID=18578755
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep infected with scrapie?
28 Mar 01
Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary watched his mother die horribly from a degenerative brain disease. Doctors told him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit her violent symptoms, and he demanded an autopsy. It showed she had died of sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by chance into a killer. But Singeltary thinks otherwise. He is one of a number of campaigners who say that some sCJD, like the variant CJD related to BSE, is caused by eating meat from infected animals. Their suspicions have focused on sheep carrying scrapie, a BSE-like disease that is widespread in flocks across Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight to the campaigners' fears. To their complete surprise, the researchers found that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by some strains of scrapie," says team member Jean-Philippe Deslys of the French Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses, south-west of Paris. Hans Kretschmar of the University of Göttingen, who coordinates CJD surveillance in Germany, is so concerned by the findings that he now wants to trawl back through past sCJD cases to see if any might have been caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no evidence that it poses a risk to human health. But if the French finding means that scrapie can cause sCJD in people, countries around the world may have overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They injected the brains of macaque monkeys with brain from BSE cattle, and from French and British vCJD patients. The brain damage and clinical symptoms in the monkeys were the same for all three. Mice injected with the original sets of brain tissue or with infected monkey brain also developed the same symptoms.
As a control experiment, the team also injected mice with brain tissue from people and animals with other prion diseases: a French case of sCJD; a French patient who caught sCJD from human-derived growth hormone; sheep with a French strain of scrapie; and mice carrying a prion derived from an American scrapie strain. As expected, they all affected the brain in a different way from BSE and vCJD. But while the American strain of scrapie caused different damage from sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute for Animal Health in Edinburgh, who was a member of the same team as Deslys. "You see about the same incidence of the disease everywhere, whether or not there are many sheep, and in countries such as New Zealand with no scrapie." In the only previous comparisons of sCJD and scrapie in mice, Bruce found they were dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would not necessarily see a relationship between the two with epidemiology if only some strains affect only some people," says Deslys. Bruce is cautious about the mouse results, but agrees they require further investigation. Other trials of scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion protein, and each type of protein can fold up two different ways. Kretschmar has found that these six combinations correspond to six clinical types of sCJD: each type of normal prion produces a particular pathology when it spontaneously deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing prion, the relationship between pathology and prion type should be different, as it is in vCJD. "If we look at brain samples from sporadic CJD cases and find some that do not fit the pattern," says Kretschmar, "that could mean they were caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence elsewhere. Singeltary and other US activists think that some of these people died after eating contaminated meat or "nutritional" pills containing dried animal brain. Governments will have a hard time facing activists like Singeltary if it turns out that some sCJD isn't as spontaneous as doctors have insisted.
Deslys's work on macaques also provides further proof that the human disease vCJD is caused by BSE. And the experiments showed that vCJD is much more virulent to primates than BSE, even when injected into the bloodstream rather than the brain. This, says Deslys, means that there is an even bigger risk than we thought that vCJD can be passed from one patient to another through contaminated blood transfusions and surgical instruments.
http://www.newscientist.com/article/mg16922840.300-like-lambs-to-the-slaughter.html
Sunday, August 09, 2009
CJD...Straight talk with...James Ironside...and...Terry Singeltary... 2009
http://creutzfeldt-jakob-disease.blogspot.com/2009/08/cjdstraight-talk-withjames.html
Tuesday, August 18, 2009
BSE-The Untold Story - joe gibbs and singeltary 1999 - 2009
http://madcowusda.blogspot.com/2009/08/bse-untold-story-joe-gibbs-and.html
Sunday, December 12, 2010
Predominant Involvement of the Cerebellum in Guinea Pigs Infected with Bovine Spongiform Encephalopathy (BSE)
Journal of Comparative Pathology Article in Press
http://creutzfeldt-jakob-disease.blogspot.com/2010/12/predominant-involvement-of-cerebellum.html
TSS
Subscribe to:
Posts (Atom)