Experimental H-type bovine spongiform encephalopathy characterized by
plaques and glial- and stellate-type prion protein deposits
Hiroyuki Okada1*, Yoshifumi Iwamaru1, Morikazu Imamura1, Kentaro Masujin1,
Yuichi Matsuura1, Yoshihisa Shimizu1 , Kazuo Kasai1, Shirou Mohri1, Takashi
Yokoyama1 and Stefanie Czub2
Abstract
Atypical bovine spongiform encephalopathy (BSE) has recently been
identified in Europe, North America, and Japan. It is classified as H-type and
L-type BSE according to the molecular mass of the disease-associated prion
protein (PrPSc). To investigate the topographical distribution and deposition
patterns of immunolabeled PrPSc, Htype BSE isolate was inoculated
intracerebrally into cattle. H-type BSE was successfully transmitted to 3
calves, with incubation periods between 500 and 600 days. Moderate to severe
spongiform changes were detected in the cerebral and cerebellar cortices, basal
ganglia, thalamus, and brainstem. H-type BSE was characterized by the presence
of PrP-immunopositive amyloid plaques in the white matter of the cerebrum, basal
ganglia, and thalamus. Moreover, intraglial-type immunolabeled PrPSc was
prominent throughout the brain. Stellate-type immunolabeled PrPSc was
conspicuous in the gray matter of the cerebral cortex, basal ganglia, and
thalamus, but not in the brainstem. In addition, PrPSc accumulation was detected
in the peripheral nervous tissues, such as trigeminal ganglia, dorsal root
ganglia, optic nerve, retina, and neurohypophysis. Cattle are susceptible to
H-type BSE with a shorter incubation period, showing distinct and
distinguishable phenotypes of PrPSc accumulation.
Introduction
Bovine spongiform encephalopathy (BSE), which belongs to a group of
diseases called transmissible spongiform encephalopathies (TSE), is a fatal
neurodegenerative disorder of cattle. BSE was first identified in the United
Kingdom in 1986 [1], then spread to European as well as North American countries
and Japan, and has affected more than 190 000 cattle in the world. The
infectious agent responsible for TSE is the disease-associated prion protein
(PrPSc), which is thought to be a post-translationally modified form of the
host-encoded membrane glycoprotein (PrPC) [2]. According to the protein-only
hypothesis, PrPSc is the principal component of the infectious agent.
On the basis of uniform pathology and biochemical profile of the
protease-resistant prion protein (PrPres) among BSE-affected cattle, it is
assumed that BSE in cattle is caused by only one prion strain. Since 2003,
variants of BSE (named atypical BSE) have been detected in Japan, Europe, and
North America and classified in at least two groups, namely, H-type and L-type
BSE, according to the molecular mass of PrPres, compared with those of the
classical BSE (named C-type BSE) [3]. H-type BSE was first identified in France
[4], and L-type BSE, called bovine amyloidotic spongiform encephalopathy (BASE),
was first detected in Italy [5]. It is accepted that C-type BSE is caused by the
consumption of BSE-contaminated feed, whereas the origins of H-type and L-type
BSE remain enigmatic. Hypotheses for the origin of atypical BSE include (1)
infection of cattle with different BSE agents; (2) infection of cattle with a
non-bovine source or unrecognized forms of infectious TSE agents; (3) genetic
mutations in the prion protein gene; and (4) spontaneous or so-called sporadic
forms of TSE in cattle, limited to old age, like the sporadic form of human
Creutzfeldt-Jakob disease (CJD) [6-10]. However, only one genetic mutation has
been found in an H-type BSE case [11]. Sequence analysis of the open reading
frame (ORF) of the prion protein gene (PRNP) has not revealed any mutations in
atypical BSE cases in France [4], Italy [5], and Canada [12]. Therefore, it
seems unrealistic to suggest a genetic origin of atypical BSE [13]. The
transmissibility of atypical H-type and L-type BSE to mice [13-18] and cattle
[19-22] has been confirmed, and these forms clearly differ from Ctype BSE
regarding incubation periods, PrPres profiles, protease susceptibility, and
spatial distribution patterns of histopathological lesions and immunolabeled
PrPSc [3,6,16,20,22]. Interestingly, C-type [23] and H-type [14,15] BSE isolates
were transmissible to wild-type mice already in the first passage, whereas
L-type BSE agent failed to transmit in the first passage but was successfully
transmitted to wild-type mice in the second passage [17].
snip...
Unfortunately, a detailed and all-encompassing analysis of neuropathology
and topographical distribution of immunolabeled PrPSc in H-type BSE-affected
cattle could not be performed, since only the obex region is routinely sampled
for BSE surveillance testing and the remaining brain as well as the carcasses
are not available in most countries [3,10,12,13,24-27]. Recently, clinical signs
and biochemical properties of experimental German H-type BSE cases have been
reported [20]. The primary objective of this study was to investigate the
transmissibility of H-type BSE, using a field isolate detected in the active
surveillance program in Canada [12]. The secondary objective was to extend the
knowledge of the topographical distribution and deposition patterns of
immunolabeled PrPSc in H-type BSE.
snip...
Results
Clinical signs
The 3 challenged calves developed initial signs of clinical disease
approximately 12 months post challenge, which included disturbance, anxiety, and
occasionally low head carriage. After 3-4 months of the onset of the clinical
disease, the animals showed loss of body condition. Around 7-10 days prior to
euthanasia, the animals developed ataxia of the forelimbs and hindlimbs and
myoclonus and were unable to rise. The cattle were euthanized at 507 (case 1,
code 7749), 574 (case 2, code 9458), and 598 (case 3, code 0728) days post
challenge (mean ± standard deviation, 559.7 ± 47.2 days). The clinical signs
were similar in all the 3 H-type BSE-challenged animals. The animals did not
show any change in temperament, such as nervousness or aggression.
snip...
Discussion
This study demonstrated successful intraspecies transmission of H-type BSE
characterized by a shorter incubation period as compared with C-type BSE [19].
To the best of our knowledge, thus far, neuropathological and
immunohistochemical data for H-type BSE have only been reported from the medulla
oblongata at the obex in German, United States, and Swedish field cases
[10,13,24]. This is related to the fact that only the obex region is sampled for
BSE rapid tests and other brain regions are often unavailable due to marked
autolysis, limitations in collection infrastructure, or freezing artifacts
[10,13,24,25]. This is the first presentation of H-type lesion profiles
involving the whole CNS and additional nervous tissues, although of
experimentally infected animals.
Incubation periods in the cattle challenged with the Canadian H-type BSE
(mean period, 18 months) were two months longer than those reported in cattle
challenged with German H-type BSE [20]. This difference in incubation periods
has several potential explanations, which include differences in agents tested,
inoculum titers, and breeding conditions. Infectivity titer issues might be
resolved by comparing second-passage infection experiment results.
Spongy changes were generally present in the gray matter throughout the
brain and spinal cord, but were more conspicuous in the cerebral cortices,
thalamus, hypothalamus, and midbrain. In most brain areas, vacuoles were
generally detected in the neuropil and only occasionally in the neurons. The
spatial distribution pattern of spongiform changes and immunolabeled PrPSc in
the brain of an H-type BSE-infected Zebu, analyzed with N-terminal-specific mAb
P4 and C-terminalspecific mAb F99/97.6.1, was similar to that in C-type BSE
cases [38]. In natural and experimental C-type BSE cases, spongiform lesions are
consistently distributed throughout the brain, but overall, the lesions in the
thalamus and brainstem including the midbrain and medulla oblongata at the obex
are more severe than those in the cerebral cortices [29,39]. The results of the
present study indicate that the vacuolar lesion score of the H-type
BSE-challenged cattle was higher than that of C-type BSE-affected cattle
[19,29,40,41]. Moreover, the topographical distribution of PrPSc in the brain of
BSE-infected sheep is similar irrespective of the different challenge routes
such as intracerebral, intravascular, or intraperitoneal route [42], suggesting
common patterns of neuroinvasion and CNS spread [43]. On the contrary, the minor
differences detected in the distribution of PrPSc in the brain between deer that
are orally and intracerebrally infected with BSE may be due to differences in
the routes of infection [44].
BSE-infected sheep is similar irrespective of the different challenge
routes such as intracerebral, intravascular, or intraperitoneal route [42],
suggesting common patterns of neuroinvasion and CNS spread [43]. On the
contrary, the minor differences detected in the distribution of PrPSc in the
brain between deer that are orally and intracerebrally infected with BSE may be
due to differences in the routes of infection [44].
The immunolabeling patterns of PrPSc in the cattle affected with H-type
BSE were characterized by the presence of both PrPSc-positive plaques and
intraglial- and stellate-type PrPSc accumulations in the brain. Severe
intraneuronal- and intraglial-type PrPSc accumulations as well as plaque-like
PrPSc aggregates with the absence of stellate-type PrPSc deposition have been
reported in the obex region of H-type BSE-affected animals [10,13]. These
immunohistochemical features were detected in the obex region and coincided with
those observed in the present study. However, neither amyloid plaques nor
stellate-type PrPSc depositions have been reported in Htype BSE-affected cattle,
most likely due to their limitation to the medulla oblongata at the obex
[8,10,13,24].
Two different types of plaques were found in this study: unicentric and
multicentric PrP plaques. Most of these plaques were uniformly immunopositive
for PrP, with a dense non-Congophilic core. The plaques that had a pale central
core with a Congophilic reaction were less frequent. It has been suggested that
Congophilic plaques may correspond with the late stage of plaque formation,
whereas non-Congophilic plaques coincide with the early stage of CJD and
Gerstmann-Sträussler- Scheinker syndrome [45]. The 2 types of PrPSc-positive
plaques–unicentric and multicentric–have been described in L-type BSE [5,19,46].
Our results indicate that the presence of PrPSc plaques in the forebrain but not
in the brainstem is one of the neuropathological features in cattle affected
with atypical BSE. In addition, glial-type PrPSc deposition in the white matter
throughout the brain seems to be a characteristic feature of Htype BSE in
cattle, as supported by identical findings in German and Swedish H-type BSE
field cases [10,13].
Extracellular PrPSc was immunolabeled with N-terminal-, core-, and
C-terminal-specific antibodies, but intracellular PrPSc did not show
immunoreactivity to the N-terminal-specific anti-PrP antibodies [47,48].
Intracellular PrPSc has markedly diminished immunoreactivity to
N-terminal-specific anti-PrP antibodies [47]. However, N-terminal-specific mAb
P4, which recognizes an epitope at bovine PrP residues 101-107, showed
intraneuronal PrPSc immunolabeling in sheep affected with C-type BSE [47] and in
Zebu affected with H-type BSE [38]. These results indicate that the epitope
region for either mAb P4 or core-specific anti-PrP antibodies is located
upstream of an intracellular truncation site [38,48]. The differences in
intracellular PrPSc truncation sites between sheep scrapie and ovine BSE [47] as
well as between C-type BSE and H-type BSE [38] most probably depend on the
strain and the tissues and cells [47]. The intensity and patterns of PrPSc
immunolabeling varied with the different anti-PrP antibodies used, and the
difference in the PrPSc immunohistochemical labeling results might be related to
the application of different technical protocols, especially antigen retrieval
methods [49-51].
The western blot profiles of PrPres for the H-type BSEchallenged cattle
and the Canadian H-type BSE-infected brain homogenate used as inoculum were
indistinguishable. Results of previous studies prove that H-type BSE isolates
have distinct biological and biochemical properties compared with C-type and
L-type BSE isolates [3,52,53]. The PrPres in H-type BSE, as detected by mAb
SAF84 recognizing the C-terminus of PrP, was thought to be composed of 2
fragments with molecular masses of 19 kDa and 10-12 kDa, possessing a different
cleavage site in the N-terminal region with PK digestion [53]. The higher
molecular mass of the unglycosylated PrPres molecules, which included an
additional 10-12 kDa fragment, in the Canadian H-type BSE case was maintained in
the challenged animals. These unique molecular features of PrP in H-type BSE are
also well preserved in transgenic and wild type mice [16,53]. In addition, a
distinct 10-12 kDa fragment detected with C-terminal-specific antibodies in
H-type BSE might be associated with the presence of PrP plaques [53].
Although PrPC glycosylation seems to play a critical role in the
maintenance of strain-dependent prion neurotropism [54,55], a recent study has
demonstrated that PrPSc glycosylation is not required for the maintenance of
strain-specific neurotropisms [56]. Strain-dependent prion neurotropism is
currently unknown, but several possibilities have been indicated [56]. Moreover,
a local difference in the PrPSc replication rate may be attributed to a high
degree of neurotropism in H-type BSE similar to that observed in C-type BSE
[57].
Since 2003, sporadic and discontinuous occurrence of atypical BSE has been
detected in Europe, North America, and Japan. Although, till date, the origin
and frequency of atypical BSE is unknown, a high prevalence is found in older
cattle over the age of eight years. This is the result of the active
surveillance programs using rapid screening tests, with the exception of a Zebu
case [38]. It has been reported that H-type BSE can be the result of a naturally
occurring, heritable variant caused by glutamic acid/lysine polymorphism at
codon 211 of the bovine PRNP gene (E211K) [11,58]. However, our cases, although
experimentally challenged via the intracranial route, and the original Canadian
H-type BSE field case [11,58] developed the disease without the novel mutation
E211K within PRNP. Therefore, atypical BSE seemed to be sporadic rather than
inherited with a higher risk in fallen stock than in healthy slaughtered cattle
[8,13,25], suggesting that young adult cattle affected with atypical BSE might
be dormant carriers. Further studies are required to determine the
epidemiological significance and origin of atypical BSE.
The present study demonstrated successful intraspecies transmission of
H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc
in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be
minimally defined by oral transmission of different TSE agents (C-type, L-type,
and H-type BSE agents) [59]. Oral transmission studies with H-type BSEinfected
cattle have been initiated and are underway to provide information regarding the
extent of similarity in the immunohistochemical and molecular features before
and after transmission.
In addition, the present data will support risk
assessments in some peripheral tissues derived from cattle affected with H-type
BSE.
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only) diagnostic criteria CVL 1992
http://bse-atypical.blogspot.com/2010/11/bse-atypical-lesion-distribution-rbse.html
Friday, March 09, 2012
Experimental H-type and L-type bovine spongiform encephalopathy in cattle:
observation of two clinical syndromes and diagnostic challenges
Research article
Thursday, June 23, 2011
Experimental H-type bovine spongiform encephalopathy characterized by
plaques and glial- and stellate-type prion protein deposits
P.4.23
Transmission of atypical BSE in humanized mouse models
Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw
Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1
1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale,
Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research
Institute, Poland; 5Kansas State University (Previously at USDA National Animal
Disease Center), USA
Background: Classical BSE is a world-wide prion disease in cattle, and the
classical BSE strain (BSE-C) has led to over 200 cases of clinical human
infection (variant CJD). Atypical BSE cases have been discovered in three
continents since 2004; they include the L-type (also named BASE), the H-type,
and the first reported case of naturally occurring BSE with mutated bovine PRNP
(termed BSE-M). The public health risks posed by atypical BSE were largely
undefined.
Objectives: To investigate these atypical BSE types in terms of their
transmissibility and phenotypes in humanized mice. Methods: Transgenic mice
expressing human PrP were inoculated with several classical (C-type) and
atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation
time, characteristics and distribution of PrPSc, symptoms, and histopathology
were or will be examined and compared.
Results: Sixty percent of BASE-inoculated humanized mice became infected
with minimal spongiosis and an average incubation time of 20-22 months, whereas
only one of the C-type BSE-inoculated mice developed prion disease after more
than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse
brains was biochemically different from bovine BASE or sCJD. PrPSc was also
detected in the spleen of 22% of BASE-infected humanized mice, but not in those
infected with sCJD. Secondary transmission of BASE in the humanized mice led to
a small reduction in incubation time.*** The atypical BSE-H strain is also
transmissible with distinct phenotypes in the humanized mice, but no BSE-M
transmission has been observed so far.
Discussion: Our results demonstrate that BASE is more virulent than
classical BSE, has a lymphotropic phenotype, and displays a modest transmission
barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg
mice. The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN
HUMANIZED MOUSE MODELS
Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina
Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi
Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case
Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto
Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany;
4National Veterinary Research Institute, Poland; 5Kansas State University,
Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous
address: USDA National Animal Disease Center, Ames, IA 50010, USA
Classical BSE is a world-wide prion disease in cattle, and the classical
BSE strain (BSE-C) has led to over 200 cases of clinical human infection
(variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have
been discovered in three continents since 2004. The first case of naturally
occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006
in the USA. The transmissibility and phenotypes of these atypical BSE
strains/isolates in humans were unknown. We have inoculated humanized transgenic
mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M
isolate. We have found that the atypical BSE-L strain is much more virulent than
the classical BSE-C.*** The atypical BSE-H strain is also transmissible in the
humanized transgenic mice with distinct phenotype, but no transmission has been
observed for the BSE-M isolate so far.
III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE,
DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)
I ask Professor Kong ;
Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease
(CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk
Assessment
''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE,
or less virulent than cBSE? just curious.....''
Professor Kong reply ;
.....snip
''As to the H-BSE, we do not have sufficient data to say one way or
another, but we have found that H-BSE can infect humans. I hope we could publish
these data once the study is complete. Thanks for your interest.''
Best regards, Qingzhong Kong, PhD Associate Professor Department of
Pathology Case Western Reserve University Cleveland, OH 44106 USA
END...TSS
Thursday, December 04, 2008 2:37 PM
"we have found that H-BSE can infect humans."
personal communication with Professor Kong. ...TSS
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
let's take a closer look at this new prionpathy or prionopathy, and then
let's look at the g-h-BSEalabama mad cow.
This new prionopathy in humans? the genetic makeup is IDENTICAL to the
g-h-BSEalabama mad cow, the only _documented_ mad cow in the world to date like
this, ......wait, it get's better. this new prionpathy is killing young and old
humans, with LONG DURATION from onset of symptoms to death, and the symptoms are
very similar to nvCJD victims, OH, and the plaques are very similar in some
cases too, bbbut, it's not related to the g-h-BSEalabama cow, WAIT NOW, it gets
even better, the new human prionpathy that they claim is a genetic TSE, has no
relation to any gene mutation in that family. daaa, ya think it could be related
to that mad cow with the same genetic make-up ??? there were literally tons and
tons of banned mad cow protein in Alabama in commerce, and none of it
transmitted to cows, and the cows to humans there from ??? r i g h t $$$
ALABAMA MAD COW g-h-BSEalabama
In this study, we identified a novel mutation in the bovine prion protein
gene (Prnp), called E211K, of a confirmed BSE positive cow from Alabama, United
States of America. This mutation is identical to the E200K pathogenic mutation
found in humans with a genetic form of CJD. This finding represents the first
report of a confirmed case of BSE with a potential pathogenic mutation within
the bovine Prnp gene. We hypothesize that the bovine Prnp E211K mutation most
likely has caused BSE in "the approximately 10-year-old cow" carrying the E221K
mutation.
her healthy calf also carried the mutation (J. A. Richt and S. M. Hall PLoS
Pathog. 4, e1000156; 2008).
This raises the possibility that the disease could occasionally be genetic
in origin. Indeed, the report of the UK BSE Inquiry in 2000 suggested that the
UK epidemic had most likely originated from such a mutation and argued against
the scrapierelated assumption. Such rare potential pathogenic PRNP mutations
could occur in countries at present considered to be free of BSE, such as
Australia and New Zealand. So it is important to maintain strict surveillance
for BSE in cattle, with rigorous enforcement of the ruminant feed ban (many
countries still feed ruminant proteins to pigs). Removal of specified risk
material, such as brain and spinal cord, from cattle at slaughter prevents
infected material from entering the human food chain. Routine genetic screening
of cattle for PRNP mutations, which is now available, could provide additional
data on the risk to the public. Because the point mutation identified in the
Alabama animals is identical to that responsible for the commonest type of
familial (genetic) CJD in humans, it is possible that the resulting infective
prion protein might cross the bovine–human species barrier more easily. Patients
with vCJD continue to be identified. The fact that this is happening less often
should not lead to relaxation of the controls necessary to prevent future
outbreaks.
Malcolm A. Ferguson-Smith Cambridge University Department of Veterinary
Medicine, Madingley Road, Cambridge CB3 0ES, UK e-mail: maf12@cam.ac.uk Jürgen
A. Richt College of Veterinary Medicine, Kansas State University, K224B Mosier
Hall, Manhattan, Kansas 66506-5601, USA
NATURE|Vol 457|26 February 2009
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and
VPSPr PRIONPATHY
(see mad cow feed in COMMERCE IN ALABAMA...TSS)
P.4.23
Transmission of atypical BSE in humanized mouse models
Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw
Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1
1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale,
Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research
Institute, Poland; 5Kansas State University (Previously at USDA National Animal
Disease Center), USA
Background: Classical BSE is a world-wide prion disease in cattle, and the
classical BSE strain (BSE-C) has led to over 200 cases of clinical human
infection (variant CJD). Atypical BSE cases have been discovered in three
continents since 2004; they include the L-type (also named BASE), the H-type,
and the first reported case of naturally occurring BSE with mutated bovine PRNP
(termed BSE-M). The public health risks posed by atypical BSE were largely
undefined.
Objectives: To investigate these atypical BSE types in terms of their
transmissibility and phenotypes in humanized mice. Methods: Transgenic mice
expressing human PrP were inoculated with several classical (C-type) and
atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation
time, characteristics and distribution of PrPSc, symptoms, and histopathology
were or will be examined and compared.
Results: Sixty percent of BASE-inoculated humanized mice became infected
with minimal spongiosis and an average incubation time of 20-22 months, whereas
only one of the C-type BSE-inoculated mice developed prion disease after more
than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse
brains was biochemically different from bovine BASE or sCJD. PrPSc was also
detected in the spleen of 22% of BASE-infected humanized mice, but not in those
infected with sCJD. Secondary transmission of BASE in the humanized mice led to
a small reduction in incubation time.*** The atypical BSE-H strain is also
transmissible with distinct phenotypes in the humanized mice, but no BSE-M
transmission has been observed so far.
Discussion: Our results demonstrate that BASE is more virulent than
classical BSE, has a lymphotropic phenotype, and displays a modest transmission
barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg
mice. The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN
HUMANIZED MOUSE MODELS
Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina
Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi
Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case
Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto
Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany;
4National Veterinary Research Institute, Poland; 5Kansas State University,
Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous
address: USDA National Animal Disease Center, Ames, IA 50010, USA
Classical BSE is a world-wide prion disease in cattle, and the classical
BSE strain (BSE-C) has led to over 200 cases of clinical human infection
(variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have
been discovered in three continents since 2004. The first case of naturally
occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006
in the USA. The transmissibility and phenotypes of these atypical BSE
strains/isolates in humans were unknown. We have inoculated humanized transgenic
mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M
isolate. We have found that the atypical BSE-L strain is much more virulent than
the classical BSE-C.*** The atypical BSE-H strain is also transmissible in the
humanized transgenic mice with distinct phenotype, but no transmission has been
observed for the BSE-M isolate so far.
III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE,
DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)
I ask Professor Kong ;
Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease
(CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk
Assessment
''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE,
or less virulent than cBSE? just curious.....''
Professor Kong reply ;
.....snip
''As to the H-BSE, we do not have sufficient data to say one way or
another, but we have found that H-BSE can infect humans. I hope we could publish
these data once the study is complete. Thanks for your interest.''
Best regards, Qingzhong Kong, PhD Associate Professor Department of
Pathology Case Western Reserve University Cleveland, OH 44106 USA
END...TSS
Thursday, December 04, 2008 2:37 PM
"we have found that H-BSE can infect humans."
personal communication with Professor Kong. ...TSS
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
P.9.21
Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim
McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre,
Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of
Calgary, Canada
Background: Three BSE types (classical and two atypical) have been
identified on the basis of molecular characteristics of the misfolded protein
associated with the disease. To date, each of these three types have been
detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16
Canadian BSE cases based on the biochemical properties of there associated
PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and
relative proteinase K sensitivity of the PrPres from each of the 16 confirmed
Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type
and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and
changes in glycosylation similar to other atypical BSE cases. PK digestion under
mild and stringent conditions revealed a reduced protease resistance of the
atypical cases compared to the C-type cases. N terminal- specific antibodies
bound to PrPres from H type but not from C or L type. The C-terminal-specific
antibodies resulted in a shift in the glycoform profile and detected a fourth
band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan. This supports the theory that the importation of BSE
contaminated feedstuff is the source of C-type BSE in Canada.
*** It also suggests a similar cause or source for atypical BSE in these
countries.
what about that ALABAMA MAD COW, AND MAD COW FEED THERE FROM IN THAT STATE
???
Saturday, August 14, 2010
BSE Case Associated with Prion Protein Gene Mutation (g-h-BSEalabama) and
VPSPr PRIONPATHY
*** (see mad cow feed in COMMERCE IN ALABAMA...TSS)
BANNED MAD COW FEED IN COMMERCE IN ALABAMA
Date: September 6, 2006 at 7:58 am PST PRODUCT
a) EVSRC Custom dairy feed, Recall # V-130-6;
b) Performance Chick Starter, Recall # V-131-6;
c) Performance Quail Grower, Recall # V-132-6;
d) Performance Pheasant Finisher, Recall # V-133-6.
CODE None RECALLING FIRM/MANUFACTURER Donaldson & Hasenbein/dba J&R
Feed Service, Inc., Cullman, AL, by telephone on June 23, 2006 and by letter
dated July 19, 2006. Firm initiated recall is complete.
REASON
Dairy and poultry feeds were possibly contaminated with ruminant based
protein.
VOLUME OF PRODUCT IN COMMERCE 477.72 tons
DISTRIBUTION AL
______________________________
PRODUCT Bulk custom dairy pre-mixes,
Recall # V-120-6 CODE None RECALLING FIRM/MANUFACTURER Ware Milling Inc.,
Houston, MS, by telephone on June 23, 2006. Firm initiated recall is complete.
REASON Possible contamination of dairy animal feeds with ruminant derived meat
and bone meal.
VOLUME OF PRODUCT IN COMMERCE 350 tons
DISTRIBUTION AL and MS
______________________________
PRODUCT
a) Tucker Milling, LLC Tm 32% Sinking Fish Grower, #2680-Pellet, 50 lb.
bags, Recall # V-121-6;
b) Tucker Milling, LLC #31120, Game Bird Breeder Pellet, 50 lb. bags,
Recall # V-122-6;
c) Tucker Milling, LLC #31232 Game Bird Grower, 50 lb. bags, Recall #
V-123-6;
d) Tucker Milling, LLC 31227-Crumble, Game Bird Starter, BMD Medicated, 50
lb bags, Recall # V-124-6;
e) Tucker Milling, LLC #31120, Game Bird Breeder, 50 lb bags, Recall #
V-125-6;
f) Tucker Milling, LLC #30230, 30 % Turkey Starter, 50 lb bags, Recall #
V-126-6;
g) Tucker Milling, LLC #30116, TM Broiler Finisher, 50 lb bags, Recall #
V-127-6
CODE All products manufactured from 02/01/2005 until 06/20/2006 RECALLING
FIRM/MANUFACTURER Recalling Firm: Tucker Milling LLC, Guntersville, AL, by
telephone and visit on June 20, 2006, and by letter on June 23, 2006.
Manufacturer: H. J. Baker and Brothers Inc., Stamford, CT. Firm initiated recall
is ongoing.
REASON Poultry and fish feeds which were possibly contaminated with
ruminant based protein were not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 7,541-50 lb bags
DISTRIBUTION AL, GA, MS, and TN
END OF ENFORCEMENT REPORT FOR AUGUST 9, 2006
###
Subject: MAD COW FEED RECALL AL AND FL VOLUME OF PRODUCT IN COMMERCE 125
TONS Products manufactured from 02/01/2005 until 06/06/2006
Date: August 6, 2006 at 6:16 pm PST PRODUCT
a) CO-OP 32% Sinking Catfish, Recall # V-100-6;
b) Performance Sheep Pell W/Decox/A/N, medicated, net wt. 50 lbs, Recall #
V-101-6;
c) Pro 40% Swine Conc Meal -- 50 lb, Recall # V-102-6;
d) CO-OP 32% Sinking Catfish Food Medicated, Recall # V-103-6;
e) "Big Jim's" BBB Deer Ration, Big Buck Blend, Recall # V-104-6;
f) CO-OP 40% Hog Supplement Medicated Pelleted, Tylosin 100 grams/ton, 50
lb. bag, Recall # V-105-6;
g) Pig Starter Pell II, 18% W/MCDX Medicated 282020, Carbadox -- 0.0055%,
Recall # V-106-6;
h) CO-OP STARTER-GROWER CRUMBLES, Complete Feed for Chickens from Hatch to
20 Weeks, Medicated, Bacitracin Methylene Disalicylate, 25 and 50 Lbs, Recall #
V-107-6;
i) CO-OP LAYING PELLETS, Complete Feed for Laying Chickens, Recall #
108-6;
j) CO-OP LAYING CRUMBLES, Recall # V-109-6;
k) CO-OP QUAIL FLIGHT CONDITIONER MEDICATED, net wt 50 Lbs, Recall #
V-110-6;
l) CO-OP QUAIL STARTER MEDICATED, Net Wt. 50 Lbs, Recall # V-111-6;
m) CO-OP QUAIL GROWER MEDICATED, 50 Lbs, Recall # V-112-6 CODE
Product manufactured from 02/01/2005 until 06/06/2006
RECALLING FIRM/MANUFACTURER Alabama Farmers Cooperative, Inc., Decatur, AL,
by telephone, fax, email and visit on June 9, 2006. FDA initiated recall is
complete.
REASON Animal and fish feeds which were possibly contaminated with ruminant
based protein not labeled as "Do not feed to ruminants".
VOLUME OF PRODUCT IN COMMERCE 125 tons
DISTRIBUTION AL and FL
END OF ENFORCEMENT REPORT FOR AUGUST 2, 2006
###
MAD COW FEED RECALL USA EQUALS 10,878.06 TONS NATIONWIDE Sun Jul 16, 2006
09:22 71.248.128.67
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINE -- CLASS II
______________________________
PRODUCT
a) PRO-LAK, bulk weight, Protein Concentrate for Lactating Dairy Animals,
Recall # V-079-6;
b) ProAmino II, FOR PREFRESH AND LACTATING COWS, net weight 50lb (22.6 kg),
Recall # V-080-6;
c) PRO-PAK, MARINE & ANIMAL PROTEIN CONCENTRATE FOR USE IN ANIMAL FEED,
Recall # V-081-6;
d) Feather Meal, Recall # V-082-6 CODE
a) Bulk
b) None
c) Bulk
d) Bulk
RECALLING FIRM/MANUFACTURER H. J. Baker & Bro., Inc., Albertville, AL,
by telephone on June 15, 2006 and by press release on June 16, 2006. Firm
initiated recall is ongoing.
REASON
Possible contamination of animal feeds with ruminent derived meat and bone
meal.
VOLUME OF PRODUCT IN COMMERCE 10,878.06 tons
DISTRIBUTION Nationwide
END OF ENFORCEMENT REPORT FOR July 12, 2006
###
Saturday, July 23, 2011
CATTLE HEADS WITH TONSILS, BEEF TONGUES, SPINAL CORD, SPECIFIED RISK
MATERIALS (SRM's) AND PRIONS, AKA MAD COW DISEASE
Saturday, November 6, 2010
TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the
EU Berne, 2010 TAFS
INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND FOOD SAFETY a
non-profit Swiss Foundation
10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN
COMMERCE USA 2007
Date: March 21, 2007 at 2:27 pm PST
RECALLS AND FIELD CORRECTIONS: VETERINARY MEDICINES -- CLASS II
PRODUCT
Bulk cattle feed made with recalled Darling's 85% Blood Meal, Flash Dried,
Recall # V-024-2007
CODE
Cattle feed delivered between 01/12/2007 and 01/26/2007
RECALLING FIRM/MANUFACTURER
Pfeiffer, Arno, Inc, Greenbush, WI. by conversation on February 5, 2007.
Firm initiated recall is ongoing.
REASON
Blood meal used to make cattle feed was recalled because it was cross-
contaminated with prohibited bovine meat and bone meal that had been
manufactured on common equipment and labeling did not bear cautionary BSE
statement. VOLUME OF PRODUCT IN COMMERCE 42,090 lbs. DISTRIBUTION WI
___________________________________
PRODUCT
Custom dairy premix products: MNM ALL PURPOSE Pellet, HILLSIDE/CDL Prot-
Buffer Meal, LEE, M.-CLOSE UP PX Pellet, HIGH DESERT/ GHC LACT Meal, TATARKA, M
CUST PROT Meal, SUNRIDGE/CDL PROTEIN Blend, LOURENZO, K PVM DAIRY Meal, DOUBLE B
DAIRY/GHC LAC Mineral, WEST PIONT/GHC CLOSEUP Mineral, WEST POINT/GHC LACT Meal,
JENKS, J/COMPASS PROTEIN Meal, COPPINI - 8# SPECIAL DAIRY Mix, GULICK, L-LACT
Meal (Bulk), TRIPLE J - PROTEIN/LACTATION, ROCK CREEK/GHC MILK Mineral,
BETTENCOURT/GHC S.SIDE MK-MN, BETTENCOURT #1/GHC MILK MINR, V&C DAIRY/GHC
LACT Meal, VEENSTRA, F/GHC LACT Meal, SMUTNY, A- BYPASS ML W/SMARTA, Recall #
V-025-2007
CODE
The firm does not utilize a code - only shipping documentation with
commodity and weights identified.
RECALLING FIRM/MANUFACTURER
Rangen, Inc, Buhl, ID, by letters on February 13 and 14, 2007. Firm
initiated recall is complete.
REASON
Products manufactured from bulk feed containing blood meal that was cross
contaminated with prohibited meat and bone meal and the labeling did not bear
cautionary BSE statement.
VOLUME OF PRODUCT IN COMMERCE
9,997,976 lbs.
DISTRIBUTION
ID and NV
END OF ENFORCEMENT REPORT FOR MARCH 21, 2007
Identification of a second bovine amyloidotic spongiform encephalopathy:
Molecular similarities with sporadic Creutzfeldt–Jakob disease
Cristina Casalone*†, Gianluigi Zanusso†‡, Pierluigi Acutis*, Sergio
Ferrari‡, Lorenzo Capucci§, Fabrizio Tagliavini¶, Salvatore Monaco‡ , and Maria
Caramelli* *Centro di Referenza Nazionale per le Encefalopatie Animali, Istituto
Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna,
148, 10195 Turin, Italy; ‡Department of Neurological and Visual Science, Section
of Clinical Neurology, Policlinico G.B. Rossi, Piazzale L.A. Scuro, 10, 37134
Verona, Italy; §Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia
Romagna, Via Bianchi, 9, 25124 Brescia, Italy; and ¶Istituto Nazionale
Neurologico ‘‘Carlo Besta,’’ Via Celoria 11, 20133 Milan, Italy
Edited by Stanley B. Prusiner, University of California, San Francisco,
CA, and approved December 23, 2003 (received for review September 9, 2003)
Transmissible spongiform encephalopathies (TSEs), or prion diseases, are
mammalian neurodegenerative disorders characterized by a posttranslational
conversion and brain accumulation of an insoluble, protease-resistant isoform
(PrPSc) of the host-encoded cellular prion protein (PrPC). Human and animal TSE
agents exist as different phenotypes that can be biochemically differentiated on
the basis of the molecular mass of the protease-resistant PrPSc fragments and
the degree of glycosylation. Epidemiological, molecular, and transmission
studies strongly suggest that the single strain of agent responsible for bovine
spongiform encephalopathy (BSE) has infected humans, causing variant
Creutzfeldt–Jakob disease. The unprecedented biological properties of the BSE
agent, which circumvents the so-called ‘‘species barrier’’ between cattle and
humans and adapts to different mammalian species, has raised considerable
concern for human health. To date, it is unknown whether more than one strain
might be responsible for cattle TSE or whether the BSE agent undergoes
phenotypic variation after natural transmission. Here we provide evidence of a
second cattle TSE. The disorder was pathologically characterized by the presence
of PrP-immunopositive amyloid plaques, as opposed to the lack of amyloid
deposition in typical BSE cases, and by a different pattern of regional
distribution and topology of brain PrPSc accumulation. In addition, Western blot
analysis showed a PrPSc type with predominance of the low molecular mass
glycoform and a protease- resistant fragment of lower molecular mass than
BSE-PrPSc. Strikingly, the molecular signature of this previously undescribed
bovine PrPSc was similar to that encountered in a distinct subtype of sporadic
Creutzfeldt–Jakob disease.
Phenotypic Similarities Between BASE and sCJD. The transmissibility of CJD
brains was initially demonstrated in primates (27), and classification of
atypical cases as CJD was based on this property (28). To date, no systematic
studies of strain typing in sCJD have been provided, and classification of
different subtypes is based on clinical, neuropathological, and molecular
features (the polymorphic PRNP codon 129 and the PrPSc glycotype) (8, 9, 15,
19). The importance of molecular PrPSc characterization in assessing the
identity of TSE strains is underscored by several studies, showing that the
stability of given disease-specific PrPSc types is maintained upon experimental
propagation of sCJD, familial CJD, and vCJD isolates in transgenic PrP-humanized
mice (8, 29). Similarly, biochemical properties of BSE- and vCJDassociated PrPSc
molecules remain stable after passage to mice expressing bovine PrP (30).
Recently, however, it has been reported that PrP-humanized mice inoculated with
BSE tissues may also propagate a distinctive PrPSc type, with a
‘‘monoglycosylated- dominant’’ pattern and electrophoretic mobility of the
unglycosylated fragment slower than that of vCJD and BSE (31). Strikingly, this
PrPSc type shares its molecular properties with the a PrPSc molecule found in
classical sCJD. This observation is at variance with the PrPSc type found in
M V2 sCJD cases and in cattle BASE, showing a monoglycosylated-dominant pattern
but faster electrophoretic mobility of the protease-resistant fragment as
compared with BSE. In addition to molecular properties of PrPSc, BASE and M V2
sCJD share a distinctive pattern of intracerebral PrP deposition, which occurs
as plaque-like and amyloid-kuru plaques. Differences were, however, observed in
the regional distribution of PrPSc. While inM V2 sCJD cases the largest amounts
of PrPSc were detected in the cerebellum, brainstem, and striatum, in cattle
BASE these areas were less involved and the highest levels of PrPSc were
recovered from the thalamus and olfactory regions.
In conclusion, decoding the biochemical PrPSc signature of individual
human and animal TSE strains may allow the identification of potential risk
factors for human disorders with unknown etiology, such as sCJD. However,
although BASE and sCJD share several characteristics, caution is dictated in
assessing a link between conditions affecting two different mammalian species,
based on convergent biochemical properties of diseaseassociated PrPSc types.
Strains of TSE agents may be better characterized upon passage to transgenic
mice. In the interim until this is accomplished, our present findings suggest a
strict epidemiological surveillance of cattle TSE and sCJD based on molecular
criteria.
Employment Listings position: Post Doctoral Fellow | Atypical BSE in
Cattle
Closing date: December 24, 2009
Anticipated start date: January/February 2010
Employer: Canadian and OIE Reference Laboratories for BSE CFIA Lethbridge
Laboratory, Lethbridge/Alberta
The Canadian and OIE reference laboratories for BSE are extensively
involved in prion diseases diagnosis and research. With a recent increase in
research activities and funding, the laboratory is looking to fill two post
doctoral fellow positions. Both positions will be located at the Canadian Food
Inspection Agency (CFIA) Lethbridge Laboratory which offers biosaftey level 3
(BSL3) and BSL2 laboratory space and is well equipped for molecular and
morphologic prion research. The facility also has a BSL3 large animal housing
wing and a state of the art post mortem room certified for prion work.
Successful candidates will have the opportunity to visit other laboratories to
cooperate in various aspects of the projects and to be trained in new techniques
and acquire new skills. With a recent increase in prion disease expertise and
research in Alberta and Canada, these positions will offer significant exposure
to cutting edge prion science via videoconferencing, meetings, workshops and
conferences. These interactions will also provide a valuable opportunity to
present research findings and discuss potential future work opportunities and
collaborations with other Canadian and international research groups.
Atypical BSE in Cattle
BSE has been linked to the human disease variant Creutzfeldt Jakob Disease
(vCJD). The known exposure pathways for humans contracting vCJD are through the
consumption of beef and beef products contaminated by the BSE agent and through
blood transfusions. However, recent scientific evidence suggests that the BSE
agent may play a role in the development of other forms of human prion diseases
as well. These studies suggest that classical type of BSE may cause type 2
sporadic CJD and that H-type atypical BSE is connected with a familial form of
CJD.
To date the OIE/WAHO assumes that the human and animal health standards set
out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE
which include the H-type and L-type atypical forms. This assumption is
scientifically not completely justified and accumulating evidence suggests that
this may in fact not be the case. Molecular characterization and the spatial
distribution pattern of histopathologic lesions and immunohistochemistry (IHC)
signals are used to identify and characterize atypical BSE. Both the L-type and
H-type atypical cases display significant differences in the conformation and
spatial accumulation of the disease associated prion protein (PrPSc) in brains
of afflicted cattle. Transmission studies in bovine transgenic and wild type
mouse models support that the atypical BSE types might be unique strains because
they have different incubation times and lesion profiles when compared to C-type
BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian
hamster the resulting molecular fingerprint had changed, either in the first or
a subsequent passage, from L-type into C-type BSE. In addition, non-human
primates are specifically susceptible for atypical BSE as demonstrated by an
approximately 50% shortened incubation time for L-type BSE as compared to
C-type. Considering the current scientific information available, it cannot be
assumed that these different BSE types pose the same human health risks as
C-type BSE or that these risks are mitigated by the same protective measures.
This study will contribute to a correct definition of specified risk
material (SRM) in atypical BSE. The incumbent of this position will develop new
and transfer existing, ultra-sensitive methods for the detection of atypical BSE
in tissue of experimentally infected cattle.
Responsibilities include:
Driving research at the National and OIE BSE reference lab to ensure
project milestones are met successfully. Contributing to the preparation of
project progress reports. Directing technical staff working on the project.
Communicating and discussing results, progress and future direction with project
principle investigator(s). Communicating with collaborative project partners.
Qualifications:
Successful completion of a PhD degree in an area focusing on or related to
prion diseases. Extensive experience with molecular and/or morphologic
techniques used in studying prion diseases and/or other protein misfolding
disorders. Ability to think independently and contribute new ideas. Excellent
written and oral communication skills. Ability to multitask, prioritize, and
meet challenges in a timely manner. Proficiency with Microsoft Office,
especially Word, PowerPoint and Excel.
How to apply:
Please send your application and/or inquiry to: Dr. Stefanie Czub, DVM,
Ph.D. Head, National and OIE BSE Reference Laboratory Canadian Food Inspection
Agency Lethbridge Laboratory P.O. Box 640, Township Road 9-1 Lethbridge, AB, T1J
3Z4 Canada
phone: +1-403-382-5500 +1-403-382-5500 ext. 5549 email:
stefanie.czub@inspection.gc.ca
Contact Info:
Last Updated: 12/10/2009 1:35:18 PM
Thursday, August 12, 2010
Seven main threats for the future linked to prions
First threat
The TSE road map defining the evolution of European policy for protection
against prion diseases is based on a certain numbers of hypotheses some of which
may turn out to be erroneous. In particular, a form of BSE (called atypical
Bovine Spongiform Encephalopathy), recently identified by systematic testing in
aged cattle without clinical signs, may be the origin of classical BSE and thus
potentially constitute a reservoir, which may be impossible to eradicate if a
sporadic origin is confirmed.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
MAD COW USDA ATYPICAL L-TYPE BASE BSE, the rest of the story...
***Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate
Model
***Infectivity in skeletal muscle of BASE-infected cattle
***feedstuffs- It also suggests a similar cause or source for atypical BSE
in these countries.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans.
full text ;
atypical L-type BASE BSE
Tuesday, May 1, 2012
BSE MAD COW LETTERS TO USDA (Tom Vilsack, Secretary of Agriculture) and FDA
(Magaret Hamburg, Commissioner of FDA) May 1, 2012
Wednesday, May 2, 2012
ARS FLIP FLOPS ON SRM REMOVAL FOR ATYPICAL L-TYPE BASE BSE RISK HUMAN AND
ANIMAL HEALTH
Friday, May 4, 2012
May 2, 2012: Update from APHIS Regarding a Detection of Bovine Spongiform
Encephalopathy (BSE) in the United States
Sunday, March 11, 2012
APHIS Proposes New Bovine Spongiform Encephalopathy Import Regulations in
Line with International Animal Health Standards Proposal Aims to Ensure Health
of the U.S. Beef Herd, Assist in Negotiations
Wednesday, April 4, 2012
Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine
Products APHIS-2008-0010-0008 RIN:0579-AC68
Sunday, May 6, 2012
Bovine Spongiform Encephalopathy Mad Cow Disease, BSE May 2, 2012 IOWA
State University OIE
MAD COW USDA ATYPICAL L-TYPE BASE BSE, the rest of the story...
***Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate
Model
***Infectivity in skeletal muscle of BASE-infected cattle
***feedstuffs- It also suggests a similar cause or source for atypical BSE
in these countries.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans.
full text ;
atypical L-type BASE BSE
Tuesday, May 1, 2012
BSE MAD COW LETTERS TO USDA (Tom Vilsack, Secretary of Agriculture) and FDA
(Magaret Hamburg, Commissioner of FDA) May 1, 2012
Wednesday, May 2, 2012
ARS FLIP FLOPS ON SRM REMOVAL FOR ATYPICAL L-TYPE BASE BSE RISK HUMAN AND
ANIMAL HEALTH
Friday, May 4, 2012
May 2, 2012: Update from APHIS Regarding a Detection of Bovine Spongiform
Encephalopathy (BSE) in the United States
Sunday, March 11, 2012
APHIS Proposes New Bovine Spongiform Encephalopathy Import Regulations in
Line with International Animal Health Standards Proposal Aims to Ensure Health
of the U.S. Beef Herd, Assist in Negotiations
Wednesday, April 4, 2012
Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine
Products APHIS-2008-0010-0008 RIN:0579-AC68
Sunday, May 6, 2012
Bovine Spongiform Encephalopathy Mad Cow Disease, BSE May 2, 2012 IOWA
State University OIE
SPONTANEOUS ??? NOT...
How the California cow got the disease remains unknown. Government
officials expressed confidence that contaminated food was not the source, saying
the animal had atypical L-type BSE, a rare variant not generally associated with
an animal consuming infected feed.
However, a BSE expert said that consumption of infected material is the
only known way that cattle get the disease under natural conditons.
“In view of what we know about BSE after almost 20 years experience,
contaminated feed has been the source of the epidemic,” said Paul Brown, a
scientist retired from the National Institute of Neurological Diseases and
Stroke.
BSE is not caused by a microbe. It is caused by the misfolding of the
so-called “prion protein” that is a normal constituent of brain and other
tissues. If a diseased version of the protein enters the brain somehow, it can
slowly cause all the normal versions to become misfolded.
It is possible the disease could arise spontaneously, though such an event
has never been recorded, Brown said.
Monday, June 27, 2011
Comparison of Sheep Nor98 with Human Variably Protease-Sensitive
Prionopathy and Gerstmann-Sträussler-Scheinker Disease
BSE: TIME TO TAKE H.B. PARRY SERIOUSLY
If the scrapie agent is generated from ovine DNA and thence causes disease
in other species, then perhaps, bearing in mind the possible role of scrapie in
CJD of humans (Davinpour et al, 1985), scrapie and not BSE should be the
notifiable disease. ...
Suspect symptoms
What if you can catch old-fashioned CJD by eating meat from a sheep
infected with scrapie?
28 Mar 01
Like lambs to the slaughter 31 March 2001 by Debora MacKenzie Magazine
issue 2284. Subscribe and get 4 free issues. FOUR years ago, Terry Singeltary
watched his mother die horribly from a degenerative brain disease. Doctors told
him it was Alzheimer's, but Singeltary was suspicious. The diagnosis didn't fit
her violent symptoms, and he demanded an autopsy. It showed she had died of
sporadic Creutzfeldt-Jakob disease.
Most doctors believe that sCJD is caused by a prion protein deforming by
chance into a killer. But Singeltary thinks otherwise. He is one of a number of
campaigners who say that some sCJD, like the variant CJD related to BSE, is
caused by eating meat from infected animals. Their suspicions have focused on
sheep carrying scrapie, a BSE-like disease that is widespread in flocks across
Europe and North America.
Now scientists in France have stumbled across new evidence that adds weight
to the campaigners' fears. To their complete surprise, the researchers found
that one strain of scrapie causes the same brain damage in mice as sCJD.
"This means we cannot rule out that at least some sCJD may be caused by
some strains of scrapie," says team member Jean-Philippe Deslys of the French
Atomic Energy Commission's medical research laboratory in Fontenay-aux-Roses,
south-west of Paris. Hans Kretschmar of the University of Göttingen, who
coordinates CJD surveillance in Germany, is so concerned by the findings that he
now wants to trawl back through past sCJD cases to see if any might have been
caused by eating infected mutton or lamb.
Scrapie has been around for centuries and until now there has been no
evidence that it poses a risk to human health. But if the French finding means
that scrapie can cause sCJD in people, countries around the world may have
overlooked a CJD crisis to rival that caused by BSE.
Deslys and colleagues were originally studying vCJD, not sCJD. They
injected the brains of macaque monkeys with brain from BSE cattle, and from
French and British vCJD patients. The brain damage and clinical symptoms in the
monkeys were the same for all three. Mice injected with the original sets of
brain tissue or with infected monkey brain also developed the same
symptoms.
As a control experiment, the team also injected mice with brain tissue from
people and animals with other prion diseases: a French case of sCJD; a French
patient who caught sCJD from human-derived growth hormone; sheep with a French
strain of scrapie; and mice carrying a prion derived from an American scrapie
strain. As expected, they all affected the brain in a different way from BSE and
vCJD. But while the American strain of scrapie caused different damage from
sCJD, the French strain produced exactly the same pathology.
"The main evidence that scrapie does not affect humans has been
epidemiology," says Moira Bruce of the neuropathogenesis unit of the Institute
for Animal Health in Edinburgh, who was a member of the same team as Deslys.
"You see about the same incidence of the disease everywhere, whether or not
there are many sheep, and in countries such as New Zealand with no scrapie." In
the only previous comparisons of sCJD and scrapie in mice, Bruce found they were
dissimilar.
But there are more than 20 strains of scrapie, and six of sCJD. "You would
not necessarily see a relationship between the two with epidemiology if only
some strains affect only some people," says Deslys. Bruce is cautious about the
mouse results, but agrees they require further investigation. Other trials of
scrapie and sCJD in mice, she says, are in progress.
People can have three different genetic variations of the human prion
protein, and each type of protein can fold up two different ways. Kretschmar has
found that these six combinations correspond to six clinical types of sCJD: each
type of normal prion produces a particular pathology when it spontaneously
deforms to produce sCJD.
But if these proteins deform because of infection with a disease-causing
prion, the relationship between pathology and prion type should be different, as
it is in vCJD. "If we look at brain samples from sporadic CJD cases and find
some that do not fit the pattern," says Kretschmar, "that could mean they were
caused by infection."
There are 250 deaths per year from sCJD in the US, and a similar incidence
elsewhere. Singeltary and other US activists think that some of these people
died after eating contaminated meat or "nutritional" pills containing dried
animal brain. Governments will have a hard time facing activists like Singeltary
if it turns out that some sCJD isn't as spontaneous as doctors have
insisted.
Deslys's work on macaques also provides further proof that the human
disease vCJD is caused by BSE. And the experiments showed that vCJD is much more
virulent to primates than BSE, even when injected into the bloodstream rather
than the brain. This, says Deslys, means that there is an even bigger risk than
we thought that vCJD can be passed from one patient to another through
contaminated blood transfusions and surgical instruments.
Monday, December 14, 2009
Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease
Are Encoded by Distinct Prion Types
(hmmm, this is getting interesting now...TSS)
Sporadic CJD type 1 and atypical/ Nor98 scrapie are characterized by fine
(reticular) deposits,
see also ;
All of the Heidenhain variants were of the methionine/ methionine type 1
molecular subtype.
see full text ;
Monday, December 14, 2009
Similarities between Forms of Sheep Scrapie and Creutzfeldt-Jakob Disease
Are Encoded by Distinct Prion Types
P03.141
Aspects of the Cerebellar Neuropathology in Nor98
Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National
Veterinary Insitute, Sweden; 2National Veterinary Institute,
Norway Nor98 is a prion disease of old sheep and goats. This atypical form
of scrapie was first described in Norway in 1998. Several features of Nor98 were
shown to be different from classical scrapie including the distribution of
disease associated prion protein (PrPd) accumulation in the brain. The
cerebellum is generally the most affected brain area in Nor98. The study here
presented aimed at adding information on the neuropathology in the cerebellum of
Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A
panel of histochemical and immunohistochemical (IHC) stainings such as IHC for
PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers
for phagocytic cells were conducted. The type of histological lesions and tissue
reactions were evaluated. The types of PrPd deposition were characterized. The
cerebellar cortex was regularly affected, even though there was a variation in
the severity of the lesions from case to case. Neuropil vacuolation was more
marked in the molecular layer, but affected also the granular cell layer. There
was a loss of granule cells. Punctate deposition of PrPd was characteristic. It
was morphologically and in distribution identical with that of synaptophysin,
suggesting that PrPd accumulates in the synaptic structures. PrPd was also
observed in the granule cell layer and in the white matter. The pathology
features of Nor98 in the cerebellum of the affected sheep showed similarities
with those of sporadic Creutzfeldt-Jakob disease in humans.
***The pathology features of Nor98 in the cerebellum of the affected sheep
showed similarities with those of sporadic Creutzfeldt-Jakob disease in
humans.
PR-26
NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS
R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B.
Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto
Superiore di Sanità, Department of Food Safety and Veterinary Public Health,
Rome, Italy (romolo.nonno@iss.it); 2 Istituto Zooprofilattico della Sardegna,
Sassari, Italy; 3 National Veterinary Institute, Department of Pathology, Oslo,
Norway
Molecular variants of PrPSc are being increasingly investigated in sheep
scrapie and are generally referred to as "atypical" scrapie, as opposed to
"classical scrapie". Among the atypical group, Nor98 seems to be the best
identified. We studied the molecular properties of Italian and Norwegian Nor98
samples by WB analysis of brain homogenates, either untreated, digested with
different concentrations of proteinase K, or subjected to enzymatic
deglycosylation. The identity of PrP fragments was inferred by means of
antibodies spanning the full PrP sequence. We found that undigested brain
homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11),
truncated at both the C-terminus and the N-terminus, and not N-glycosylated.
After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and
N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11.
Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are
mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at
the highest concentrations, similarly to PrP27-30 associated with classical
scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment
of 17 kDa with the same properties of PrP11, that was tentatively identified as
a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in
2% sodium laurylsorcosine and is mainly produced from detergentsoluble,
full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a
sample with molecular and pathological properties consistent with Nor98 showed
plaque-like deposits of PrPSc in the thalamus when the brain was analysed by
PrPSc immunohistochemistry. Taken together, our results show that the
distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids
~ 90-155. This fragment is produced by successive N-terminal and C-terminal
cleavages from a full-length and largely detergent-soluble PrPSc, is produced in
vivo and is extremely resistant to PK digestion.
*** Intriguingly, these conclusions suggest that some pathological features
of Nor98 are reminiscent of Gerstmann-Sträussler-Scheinker disease.
119
A newly identified type of scrapie agent can naturally infect sheep with
resistant PrP genotypes
Annick Le Dur*,?, Vincent Béringue*,?, Olivier Andréoletti?, Fabienne
Reine*, Thanh Lan Laï*, Thierry Baron§, Bjørn Bratberg¶, Jean-Luc Vilotte?,
Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,?? +Author
Affiliations
*Virologie Immunologie Moléculaires and ?Génétique Biochimique et
Cytogénétique, Institut National de la Recherche Agronomique, 78350
Jouy-en-Josas, France; ?Unité Mixte de Recherche, Institut National de la
Recherche Agronomique-Ecole Nationale Vétérinaire de Toulouse, Interactions Hôte
Agent Pathogène, 31066 Toulouse, France; §Agence Française de Sécurité Sanitaire
des Aliments, Unité Agents Transmissibles Non Conventionnels, 69364 Lyon,
France; **Pathologie Infectieuse et Immunologie, Institut National de la
Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology,
National Veterinary Institute, 0033 Oslo, Norway
***Edited by Stanley B. Prusiner, University of California, San Francisco,
CA (received for review March 21, 2005)
Abstract Scrapie in small ruminants belongs to transmissible spongiform
encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative
disorders that affect humans and animals and can transmit within and between
species by ingestion or inoculation. Conversion of the host-encoded prion
protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP
(PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified
surveillance of scrapie in the European Union, together with the improvement of
PrPSc detection techniques, has led to the discovery of a growing number of
so-called atypical scrapie cases. These include clinical Nor98 cases first
identified in Norwegian sheep on the basis of unusual pathological and PrPSc
molecular features and "cases" that produced discordant responses in the rapid
tests currently applied to the large-scale random screening of slaughtered or
fallen animals. Worryingly, a substantial proportion of such cases involved
sheep with PrP genotypes known until now to confer natural resistance to
conventional scrapie. Here we report that both Nor98 and discordant cases,
including three sheep homozygous for the resistant PrPARR allele (A136R154R171),
efficiently transmitted the disease to transgenic mice expressing ovine PrP, and
that they shared unique biological and biochemical features upon propagation in
mice. *** These observations support the view that a truly infectious TSE agent,
unrecognized until recently, infects sheep and goat flocks and may have
important implications in terms of scrapie control and public health.
Monday, December 1, 2008
When Atypical Scrapie cross species barriers
Authors
Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon
S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J.
M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France;
ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex,
France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway,
INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.
Content
Atypical scrapie is a TSE occurring in small ruminants and harbouring
peculiar clinical, epidemiological and biochemical properties. Currently this
form of disease is identified in a large number of countries. In this study we
report the transmission of an atypical scrapie isolate through different species
barriers as modeled by transgenic mice (Tg) expressing different species PRP
sequence.
The donor isolate was collected in 1995 in a French commercial sheep flock.
inoculation into AHQ/AHQ sheep induced a disease which had all
neuro-pathological and biochemical characteristics of atypical scrapie.
Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate
retained all the described characteristics of atypical scrapie.
Surprisingly the TSE agent characteristics were dramatically different
v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and
biochemical characteristics similar to those of atypical BSE L in the same mouse
model. Moreover, whereas no other TSE agent than BSE were shown to transmit into
Tg porcine mice, atypical scrapie was able to develop into this model, albeit
with low attack rate on first passage.
Furthermore, after adaptation in the porcine mouse model this prion showed
similar biological and biochemical characteristics than BSE adapted to this
porcine mouse model. Altogether these data indicate.
(i) the unsuspected potential abilities of atypical scrapie to cross
species barriers
(ii) the possible capacity of this agent to acquire new characteristics
when crossing species barrier
These findings raise some interrogation on the concept of TSE strain and on
the origin of the diversity of the TSE agents and could have consequences on
field TSE control measures.
Tuesday, April 28, 2009
Nor98-like Scrapie in the United States of America
Heidenhain Variant Creutzfeldt Jakob Disease autopsy case report
'MOM'
DIVISION OF NEUROPATHOLOGY University of Texas Medical Branch 114
McCullough Bldg. Galveston, Texas 77555-0785
FAX COVER SHEET
DATE: 4-23-98
TO: Mr. Terry Singeltary @ -------
FROM: Gerald Campbell
FAX: (409) 772-5315 PHONE: (409) 772-2881
Number of Pages (including cover sheet):
Message:
*CONFIDENTIALITY NOTICE*
This document accompanying this transmission contains confidential
information belonging to the sender that is legally privileged. This information
is intended only for the use of the individual or entry names above. If you are
not the intended recipient, you are hereby notified that any disclosure, copying
distribution, or the taking of any action in reliances on the contents of this
telefaxed information is strictly prohibited. If you received this telefax in
error, please notify us by telephone immediately to arrange for return of the
original documents. -------------------------- Patient Account: 90000014-518
Med. Rec. No.: (0160)118511Q Patient Name: POULTER, BARBARA Age: 63 YRS DOB:
10/17/34 Sex: F Admitting Race: C
Attending Dr.: Date / Time Admitted : 12/14/97 1228 Copies to:
UTMB University of Texas Medical Branch Galveston, Texas 77555-0543 (409)
772-1238 Fax (409) 772-5683 Pathology Report
FINAL AUTOPSY DIAGNOSIS Autopsy' Office (409)772-2858
Autopsy NO.: AU-97-00435
AUTOPSY INFORMATION: Occupation: Unknown Birthplace: Unknown Residence:
Crystal Beach Date/Time of Death: 12/14/97 13:30 Date/Time of Autopsy: 12/15/97
15:00 Pathologist/Resident: Pencil/Fernandez Service: Private Restriction: Brain
only
FINAL AUTOPSY DIAGNOSIS
I. Brain: Creutzfeldt-Jakob disease, Heidenhain variant.
WHAT ABOUT those old studies at Mission, Texas, where USA scrapie was
transmitted to USA cattle, but the results was not c-BSE. IT was a different
TSE.
WHAT ABOUT atypical Nor-98 Scrapie in the USA, and TSE there from to other
species ???
The key word here is diverse. What does diverse mean?
If USA scrapie transmitted to USA bovine does not produce pathology as the
UK c-BSE, then why would CJD from there look like UK vCJD?"
SEE FULL TEXT ;
.57 The experiment which might have determined whether BSE and scrapie
were caused by the same agent (ie, the feeding of natural scrapie to cattle) was
never undertaken in the UK. It was, however, performed in the USA in 1979, when
it was shown that cattle inoculated with the scrapie agent endemic in the flock
of Suffolk sheep at the United States Department of Agriculture in Mission,
Texas, developed a TSE quite unlike BSE. 32 The findings of the initial
transmission, though not of the clinical or neurohistological examination, were
communicated in October 1988 to Dr Watson, Director of the CVL, following a
visit by Dr Wrathall, one of the project leaders in the Pathology Department of
the CVL, to the United States Department of Agriculture. 33 The results were not
published at this point, since the attempted transmission to mice from the
experimental cow brain had been inconclusive. The results of the clinical and
histological differences between scrapie-affected sheep and cattle were
published in 1995. Similar studies in which cattle were inoculated
intracerebrally with scrapie inocula derived from a number of scrapie-affected
sheep of different breeds and from different States, were carried out at the US
National Animal Disease Centre. 34 The results, published in 1994, showed that
this source of scrapie agent, though pathogenic for cattle, did not produce the
same clinical signs of brain lesions characteristic of BSE.
32 Clark, W., Hourrigan, J. and Hadlow, W. (1995) Encephalopathy in Cattle
Experimentally Infected with the Scrapie Agent, American Journal of Veterinary
Research, 56, 606-12
33 YB88/10.00/1.1
Monday, June 20, 2011 2011
Annual Conference of the National Institute for Animal Agriculture ATYPICAL
NOR-98 LIKE SCRAPIE UPDATE USA
Monday, November 30, 2009
USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH
CODE
I strenuously urge the USDA and the OIE et al to revoke the exemption of
the legal global trading of atypical Nor-98 scrapie TSE. ...TSS
Friday, February 11, 2011
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
IN 5 years, atypical Nor-98 Scrapie has spread from coast to coast in the
USA. ...TSS
Thursday, March 29, 2012
atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012
NIAA Annual Conference April 11-14, 2011San Antonio, Texas
TSS