Thursday, April 30, 2015

Immediate and ongoing detection of prions in the blood of hamsters and deer following oral, nasal, or blood inoculations

Immediate and ongoing detection of prions in the blood of hamsters and deer following oral, nasal, or blood inoculations

 

Alan M. Elder1, Davin M. Henderson1, Amy V. Nalls1, Edward A. Hoover1, Anthony E. Kincaid2,3, Jason C. Bartz2 and Candace K. Mathiason1#

 

+ Author Affiliations 1Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, United States of America 2Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68178, United States of America 3Department of Pharmacy Sciences, Creighton University, Omaha, NE, 68178, United States of America

 

ABSTRACT

 

Infectious prions traverse epithelial barriers to gain access to the circulatory system, yet the temporal parameters of transepithelial transport and persistence in the blood over time remains unknown. We used wbRT-QuIC to analyze whole blood collected from TSE-inoculated deer and hamsters throughout the entire incubation period for the presence of PrPC-conversion competent amyloid (PrPC-CCA). We observed PrPC-CCA in the blood of TSE-inoculated hosts throughout disease course from minutes post exposure to terminal disease.

 

 FOOTNOTES

 

↵#To whom any correspondence should be addressed: candace.mathiason@colostate.edu, 1619 Campus Delivery, Fort Collins, Co 80523-1619, 970 491-3975 Copyright © 2015, American Society for Microbiology. All Rights Reserved.

 




 

Prions circulate in the blood of prion-infected hosts, including humans with variant Creutzfeldt- Jakob disease. Determining the parameters of blood-borne prions during the long asymptomatic phase of disease characteristic of all prion diseases has been a long-standing problem in prion biology. Elder et. al (p. 7421–7424) have demonstrated amyloid formation, a biomarker for prions, in the blood of prion-infected rodent and cervid hosts as early as 15 minutes post-mucosal or -intravenous infection. This prionemia persists throughout the disease course, indicating a role for hematogenous prions throughout the preclinical stage of illness.

 

snip...
 
 
UPDATED June 20, 2015 further into this study ;

 

***This is the first report of the detection of PrPC-CCA in the blood of animals within minutes of exposure to TSE inoculum. The use of PrPC-CCA to detect prions in tissues and bodily fluids of TSE-infected hosts has been shown to be as sensitive as a bioassay and has provided insight into a variety of prion diseases (15–18). The immediate detection of the point-source inoculum was seen following exposure to mucosal surfaces in the nose and gut; the same immediate detection of PrPC-CCA was seen following i.v. injection. This immediate detection indicates that the mucosae of the nasal cavity and the gut provide an inefficient anatomical barrier to prion entry—i.e., exposure to the mucosal surfaces does not differ significantly, in terms of temporal systemic spread, from injection directly into blood. These data, along with reports from Kincaid et al. (19) and Jeffrey et al. (20), demonstrate that mucosal surfaces are not capable of preventing the near-immediate passage of the inoculum into underlying lamina propria and blood. The absence of an efficient mucosal barrier to prion infection has significant implications for the pathogenesis of prion diseases. *** In addition, there are experimental and safety concerns, including the consideration that the blood of any animal exposed to prions may immediately contain prions.

 


 

 

I don’t have access to the full text of this study, thus, not knowing exactly which TSE this study was speaking of ‘’We observed PrPC-CCA in the blood of TSE-inoculated hosts throughout disease course from minutes post exposure to terminal disease.’’ , but seems concerning to me. ...kind regards, terry

 

 

*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies.

 


 

Circulation of prions within dust on a scrapie affected farm

 

Kevin C Gough1, Claire A Baker2, Hugh A Simmons3, Steve A Hawkins3 and Ben C Maddison2*

 

Abstract

 

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

 

snip...

 

Discussion

 

We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

 

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.

 


 

Wednesday, April 22, 2015

 

Circulation of prions within dust on a scrapie affected farm

 


 

Saturday, March 15, 2014

 

Potential role of soil properties in the spread of CWD in western Canada

 


 

Sunday, November 3, 2013

 

Environmental Impact Statements; Availability, etc.: Animal Carcass Management [Docket No. APHIS-2013-0044]

 


 

Friday, February 08, 2013

 

*** Behavior of Prions in the Environment: Implications for Prion Biology

 


 

Sunday, September 01, 2013

 

hunting over gut piles and CWD TSE prion disease

 


 

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. ...

 

also, see where even decades back, the USDA had the same thought as they do today with CWD, not their problem...see page 27 below as well, where USDA stated back then, the same thing they stated in the state of Pennsylvania, not their damn business, once they escape, and they said the same thing about CWD in general back then ;

 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 

sound familiar $$$

 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

Sunday, October 27, 2013

 

A Kiss of a Prion: New Implications for Oral Transmissibility

 


 

***please read this***

 

98 | Veterinary Record | January 24, 2015

 

EDITORIAL

 

Scrapie: a particularly persistent pathogen

 

Cristina Acín

 

Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’

 

From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).

 

Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.

 

Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.

 

The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).

 

In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.

 

Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).

 

In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.

 

The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).

 

Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).

 

So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?

 

What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.

 

References

 

snip...

 

98 | Veterinary Record | January 24, 2015

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip...

 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

Thursday, March 26, 2015

 

Increased Infectivity of Anchorless Mouse Scrapie Prions in Transgenic Mice Overexpressing Human Prion Protein

 


 

Sunday, March 29, 2015

 

Uncommon prion disease induced in macaque ten years after scrapie inoculation

 


 

Tuesday, December 16, 2014

 

Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

Friday, January 30, 2015

 

Scrapie: a particularly persistent pathogen

 


 

Wednesday, March 18, 2015

 

Chronic Wasting Disease CWD Confirmed Texas Trans Pecos March 18, 2015

 


 

Wednesday, March 25, 2015

 

Chronic Wasting Disease CWD Cases Confirmed In New Mexico 2013 and 2014 UPDATE 2015

 


 

Tuesday, December 20, 2011

 

CHRONIC WASTING DISEASE CWD WISCONSIN Almond Deer (Buckhorn Flats) FarmUpdate DECEMBER 2011The CWD infection rate was nearly 80%, the highest ever in a North American captive herd. RECOMMENDATION: That the Board approve the purchase of 80acres of land for $465,000 for the Statewide Wildlife Habitat Program inPortage County and approve the restrictions on public use of the site.SUMMARY:

 


 

For Immediate Release Thursday, October 2, 2014

 

Dustin Vande Hoef 515/281-3375 or 515/326-1616 (cell) or Dustin.VandeHoef@IowaAgriculture.gov

 

TEST RESULTS FROM CAPTIVE DEER HERD WITH CHRONIC WASTING DISEASE RELEASED 79.8 percent of the deer tested positive for the disease

 

DES MOINES – The Iowa Department of Agriculture and Land Stewardship today announced that the test results from the depopulation of a quarantined captive deer herd in north-central Iowa showed that 284 of the 356 deer, or 79.8% of the herd, tested positive for Chronic Wasting Disease (CWD). The owners of the quarantined herd have entered into a fence maintenance agreement with the Iowa Department of Agriculture and Land Stewardship,which requires the owners to maintain the 8’ foot perimeter fence around the herd premises for five years after the depopulation was complete and the premises had been cleaned and disinfected CWD is a progressive, fatal, degenerative neurological disease of farmed and free-ranging deer, elk, and moose. There is no known treatment or vaccine for CWD. CWD is not a disease that affects humans.On July 18, 2012, USDA Animal and Plant Health Inspection Service’s (APHIS)National Veterinary Services Lab in Ames, IA confirmed that a male whitetail deer harvested from a hunting preserve in southeast IA was positive for CWD. An investigation revealed that this animal had just been introduced into the hunting preserve from the above-referenced captive deer herd in north-central Iowa.The captive deer herd was immediately quarantined to prevent the spread of CWD. The herd has remained in quarantine until its depopulation on August 25 to 27, 2014.The Iowa Department of Agriculture and Land Stewardship participated in a joint operation to depopulate the infected herd with USDA Veterinary Services, which was the lead agency, and USDA Wildlife Services.Federal indemnity funding became available in 2014. USDA APHIS appraised the captive deer herd of 376 animals at that time, which was before depopulation and testing, at $1,354,250. At that time a herd plan was developed with the owners and officials from USDA and the Iowa Department of Agriculture and Land Stewardship.Once the depopulation was complete and the premises had been cleaned and disinfected, indemnity of $917,100.00 from the USDA has been or will be paid to the owners as compensation for the 356 captive deer depopulated.The Iowa Department of Agriculture and Land Stewardship operates a voluntary CWD program for farms that sell live animals. Currently 145 Iowa farms participate in the voluntary program. The above-referenced captive deer facility left the voluntary CWD program prior to the discovery of the disease as they had stopped selling live animals. All deer harvested in a hunting preserve must be tested for CWD. -30-

 


 

*** see history of this CWD blunder here ;

 


 

On June 5, 2013, DNR conducted a fence inspection, after gaining approval from surrounding landowners, and confirmed that the fenced had beencut or removed in at least four separate locations; that the fence had degraded and was failing to maintain the enclosure around the Quarantined Premises in at least one area; that at least three gates had been opened;and that deer tracks were visible in and around one of the open areas in the sand on both sides of the fence, evidencing movement of deer into the Quarantined Premises.

 


 

Tuesday, October 07, 2014

 

*** Wisconsin white-tailed deer tested positive for CWD on a Richland County breeding farm, and a case of CWD has been discovered on a Marathon County hunting preserve

 


 

*** Wisconsin 16 age limit on testing dead deer Game Farm CWD Testing Protocol Needs To Be Revised

 

Approximately 4,200 fawns, defined as deer under 1 year of age, were sampled from the eradication zone over the last year. The majority of fawns sampled were between the ages of 5 to 9 months, though some were as young as 1 month.

 

*** Two of the six fawns with CWD detected were 5 to 6 months old.

 

All six of the positive fawns were taken from the core area of the CWD eradication zone where the highest numbers of positive deer have been identified. ...

 

snip...

 

"Finding CWD prions in both lymph and brain tissues of deer this young is slightly surprising," said Langenberg, "and provides information that CWD infection and illness may progress more rapidly in a white-tailed deer than previously suspected. Published literature suggests that CWD doesn't cause illness in a deer until approximately 16 months of age. Our fawn data shows that a few wild white-tailed deer may become sick from CWD or may transmit the disease before they reach that age of 16 months." ... see full text and more here ; Saturday, February 04, 2012

 

Wisconsin 16 MONTH age limit on testing dead deer Game Farm CWD Testing Protocol Needs To Be Revised

 


 

Thursday, July 03, 2014

 

*** How Chronic Wasting Disease is affecting deer population and what’s the risk to humans and pets?

 


 

Tuesday, July 01, 2014

 

*** CHRONIC WASTING DISEASE CWD TSE PRION DISEASE, GAME FARMS, AND POTENTIAL RISK FACTORS THERE FROM

 


 

===========================================

 

spreading cwd around...

 

Between 1996 and 2002, chronic wasting disease was diagnosed in 39 herds of farmed elk in Saskatchewan in a single epidemic. All of these herds were depopulated as part of the Canadian Food Inspection Agency’s (CFIA) disease eradication program. Animals, primarily over 12 mo of age, were tested for the presence CWD prions following euthanasia. Twenty-one of the herds were linked through movements of live animals with latent CWD from a single infected source herd in Saskatchewan, 17 through movements of animals from 7 of the secondarily infected herds.

 

***The source herd is believed to have become infected via importation of animals from a game farm in South Dakota where CWD was subsequently diagnosed (7,4). A wide range in herd prevalence of CWD at the time of herd depopulation of these herds was observed. Within-herd transmission was observed on some farms, while the disease remained confined to the introduced animals on other farms.

 


 

spreading cwd around...

 

Friday, May 13, 2011

 

Chronic Wasting Disease (CWD) outbreaks and surveillance program in the Republic of Korea

 

Hyun-Joo Sohn, Yoon-Hee Lee, Min-jeong Kim, Eun-Im Yun, Hyo-Jin Kim, Won-Yong Lee, Dong-Seob Tark, In- Soo Cho, Foreign Animal Disease Research Division, National Veterinary Research and Quarantine Service, Republic of Korea

 

Chronic wasting disease (CWD) has been recognized as an important prion disease in native North America deer and Rocky mountain elks. The disease is a unique member of the transmissible spongiform encephalopathies (TSEs), which naturally affects only a few species. CWD had been limited to USA and Canada until 2000.

 

On 28 December 2000, information from the Canadian government showed that a total of 95 elk had been exported from farms with CWD to Korea. These consisted of 23 elk in 1994 originating from the so-called “source farm” in Canada, and 72 elk in 1997, which had been held in pre export quarantine at the “source farm”.Based on export information of CWD suspected elk from Canada to Korea, CWD surveillance program was initiated by the Ministry of Agriculture and Forestry (MAF) in 2001.

 

All elks imported in 1997 were traced back, however elks imported in 1994 were impossible to identify. CWD control measures included stamping out of all animals in the affected farm, and thorough cleaning and disinfection of the premises. In addition, nationwide clinical surveillance of Korean native cervids, and improved measures to ensure reporting of CWD suspect cases were implemented.

 

Total of 9 elks were found to be affected. CWD was designated as a notifiable disease under the Act for Prevention of Livestock Epidemics in 2002.

 

Additional CWD cases - 12 elks and 2 elks - were diagnosed in 2004 and 2005.

 

Since February of 2005, when slaughtered elks were found to be positive, all slaughtered cervid for human consumption at abattoirs were designated as target of the CWD surveillance program. Currently, CWD laboratory testing is only conducted by National Reference Laboratory on CWD, which is the Foreign Animal Disease Division (FADD) of National Veterinary Research and Quarantine Service (NVRQS).

 

In July 2010, one out of 3 elks from Farm 1 which were slaughtered for the human consumption was confirmed as positive. Consequently, all cervid – 54 elks, 41 Sika deer and 5 Albino deer – were culled and one elk was found to be positive. Epidemiological investigations were conducted by Veterinary Epidemiology Division (VED) of NVRQS in collaboration with provincial veterinary services.

 

Epidemiologically related farms were found as 3 farms and all cervid at these farms were culled and subjected to CWD diagnosis. Three elks and 5 crossbreeds (Red deer and Sika deer) were confirmed as positive at farm 2.

 

All cervids at Farm 3 and Farm 4 – 15 elks and 47 elks – were culled and confirmed as negative.

 

Further epidemiological investigations showed that these CWD outbreaks were linked to the importation of elks from Canada in 1994 based on circumstantial evidences.

 

In December 2010, one elk was confirmed as positive at Farm 5. Consequently, all cervid – 3 elks, 11 Manchurian Sika deer and 20 Sika deer – were culled and one Manchurian Sika deer and seven Sika deer were found to be positive. This is the first report of CWD in these sub-species of deer. Epidemiological investigations found that the owner of the Farm 2 in CWD outbreaks in July 2010 had co-owned the Farm 5.

 

In addition, it was newly revealed that one positive elk was introduced from Farm 6 of Jinju-si Gyeongsang Namdo. All cervid – 19 elks, 15 crossbreed (species unknown) and 64 Sika deer – of Farm 6 were culled, but all confirmed as negative.

 


 


 


 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

Sunday, July 13, 2014

 

Louisiana deer mystery unleashes litigation 6 does still missing from CWD index herd in Pennsylvania Great Escape

 


 

Saturday, June 29, 2013

 

PENNSYLVANIA CAPTIVE CWD INDEX HERD MATE YELLOW *47 STILL RUNNING LOOSE IN INDIANA, YELLOW NUMBER 2 STILL MISSING, AND OTHERS ON THE RUN STILL IN LOUISIANA

 


 

Tuesday, June 11, 2013

 

*** CWD GONE WILD, More cervid escapees from more shooting pens on the loose in Pennsylvania

 


 

Wednesday, September 04, 2013

 

***cwd - cervid captive livestock escapes, loose and on the run in the wild...

 


 

Friday, January 30, 2015

 

*** Scrapie: a particularly persistent pathogen ***

 


 

Tuesday, January 06, 2015

 

APHIS Provides Additional Information on Chronic Wasting Disease (CWD) Indemnity Requests January 5, 2015 05:26 PM EST

 


 

31 Jan 2015 at 20:14 GMT

 

*** Singeltary reply ;

 

ruminant feed ban for cervids in the United States ?

 

31 Jan 2015 at 20:14 GMT

 


 

Friday, April 17, 2015

 

Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

 

>>> show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 


 

Monday, March 09, 2015

 

Chronic Wasting Disease CWD TSE prion and human animal risk factor there from

 


 

Sunday, April 12, 2015

 

*** Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies 2014 Annual Report ***

 


 

Wednesday, April 15, 2015

 

KURU Transmissible Spongiform Encephalopthy TSE Prion Disease

 


 

 

 

TSS

Wednesday, April 22, 2015

Circulation of prions within dust on a scrapie affected farm

Circulation of prions within dust on a scrapie affected farm

 

Kevin C Gough1, Claire A Baker2, Hugh A Simmons3, Steve A Hawkins3 and Ben C Maddison2*

 

Abstract

 

Prion diseases are fatal neurological disorders that affect humans and animals. Scrapie of sheep/goats and Chronic Wasting Disease (CWD) of deer/elk are contagious prion diseases where environmental reservoirs have a direct link to the transmission of disease. Using protein misfolding cyclic amplification we demonstrate that scrapie PrPSc can be detected within circulating dusts that are present on a farm that is naturally contaminated with sheep scrapie. The presence of infectious scrapie within airborne dusts may represent a possible route of infection and illustrates the difficulties that may be associated with the effective decontamination of such scrapie affected premises.

 

snip...

 

 Discussion

 

We present biochemical data illustrating the airborne movement of scrapie containing material within a contaminated farm environment. We were able to detect scrapie PrPSc within extracts from dusts collected over a 70 day period, in the absence of any sheep activity. We were also able to detect scrapie PrPSc within dusts collected within pasture at 30 m but not at 60 m distance away from the scrapie contaminated buildings, suggesting that the chance of contamination of pasture by scrapie contaminated dusts decreases with distance from contaminated farm buildings. PrPSc amplification by sPMCA has been shown to correlate with infectivity and amplified products have been shown to be infectious [14,15]. These experiments illustrate the potential for low dose scrapie infectivity to be present within such samples. We estimate low ng levels of scrapie positive brain equivalent were deposited per m2 over 70 days, in a barn previously occupied by sheep affected with scrapie. This movement of dusts and the accumulation of low levels of scrapie infectivity within this environment may in part explain previous observations where despite stringent pen decontamination regimens healthy lambs still became scrapie infected after apparent exposure from their environment alone [16]. The presence of sPMCA seeding activity and by inference, infectious prions within dusts, and their potential for airborne dissemination is highly novel and may have implications for the spread of scrapie within infected premises. The low level circulation and accumulation of scrapie prion containing dust material within the farm environment will likely impede the efficient decontamination of such scrapie contaminated buildings unless all possible reservoirs of dust are removed. Scrapie containing dusts could possibly infect animals during feeding and drinking, and respiratory and conjunctival routes may also be involved. It has been demonstrated that scrapie can be efficiently transmitted via the nasal route in sheep [17], as is also the case for CWD in both murine models and in white tailed deer [18-20].

 

The sources of dust borne prions are unknown but it seems reasonable to assume that faecal, urine, skin, parturient material and saliva-derived prions may contribute to this mobile environmental reservoir of infectivity. This work highlights a possible transmission route for scrapie within the farm environment, and this is likely to be paralleled in CWD which shows strong similarities with scrapie in terms of prion dissemination and disease transmission. The data indicate that the presence of scrapie prions in dust is likely to make the control of these diseases a considerable challenge.

 


 

Saturday, March 15, 2014

 

Potential role of soil properties in the spread of CWD in western Canada

 


 

Sunday, November 3, 2013

 

Environmental Impact Statements; Availability, etc.: Animal Carcass Management [Docket No. APHIS-2013-0044]

 


 

Friday, February 08, 2013

 

*** Behavior of Prions in the Environment: Implications for Prion Biology

 


 

Sunday, September 01, 2013

 

hunting over gut piles and CWD TSE prion disease

 


 

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep. ...

 

also, see where even decades back, the USDA had the same thought as they do today with CWD, not their problem...see page 27 below as well, where USDA stated back then, the same thing they stated in the state of Pennsylvania, not their damn business, once they escape, and they said the same thing about CWD in general back then ;

 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 


 

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

 

sound familiar $$$

 

Sunday, January 06, 2013

 

USDA TO PGC ONCE CAPTIVES ESCAPE

 

*** "it‘s no longer its business.”

 


 

Sunday, October 27, 2013

 

A Kiss of a Prion: New Implications for Oral Transmissibility

 


 

***please read this***

 

98 | Veterinary Record | January 24, 2015

 

EDITORIAL

 

Scrapie: a particularly persistent pathogen

 

Cristina Acín

 

Resistant prions in the environment have been the sword of Damocles for scrapie control and eradication. Attempts to establish which physical and chemical agents could be applied to inactivate or moderate scrapie infectivity were initiated in the 1960s and 1970s,with the first study of this type focusing on the effect of heat treatment in reducing prion infectivity (Hunter and Millson 1964). Nowadays, most of the chemical procedures that aim to inactivate the prion protein are based on the method developed by Kimberlin and collaborators (1983). This procedure consists of treatment with 20,000 parts per million free chlorine solution, for a minimum of one hour, of all surfaces that need to be sterilised (in laboratories, lambing pens, slaughterhouses, and so on). Despite this, veterinarians and farmers may still ask a range of questions, such as ‘Is there an official procedure published somewhere?’ and ‘Is there an international organisation which recommends and defines the exact method of scrapie decontamination that must be applied?’

 

From a European perspective, it is difficult to find a treatment that could be applied, especially in relation to the disinfection of surfaces in lambing pens of affected flocks. A 999/2001 EU regulation on controlling spongiform encephalopathies (European Parliament and Council 2001) did not specify a particular decontamination measure to be used when an outbreak of scrapie is diagnosed. There is only a brief recommendation in Annex VII concerning the control and eradication of transmissible spongiform encephalopathies (TSE s).

 

Chapter B of the regulation explains the measures that must be applied if new caprine animals are to be introduced to a holding where a scrapie outbreak has previously been diagnosed. In that case, the statement indicates that caprine animals can be introduced ‘provided that a cleaning and disinfection of all animal housing on the premises has been carried out following destocking’.

 

Issues around cleaning and disinfection are common in prion prevention recommendations, but relevant authorities, veterinarians and farmers may have difficulties in finding the specific protocol which applies. The European Food and Safety Authority (EFSA ) published a detailed report about the efficacy of certain biocides, such as sodium hydroxide, sodium hypochlorite, guanidine and even a formulation of copper or iron metal ions in combination with hydrogen peroxide, against prions (EFSA 2009). The report was based on scientific evidence (Fichet and others 2004, Lemmer and others 2004, Gao and others 2006, Solassol and others 2006) but unfortunately the decontamination measures were not assessed under outbreak conditions.

 

The EFSA Panel on Biological Hazards recently published its conclusions on the scrapie situation in the EU after 10 years of monitoring and control of the disease in sheep and goats (EFSA 2014), and one of the most interesting findings was the Icelandic experience regarding the effect of disinfection in scrapie control. The Icelandic plan consisted of: culling scrapie-affected sheep or the whole flock in newly diagnosed outbreaks; deep cleaning and disinfection of stables, sheds, barns and equipment with high pressure washing followed by cleaning with 500 parts per million of hypochlorite; drying and treatment with 300 ppm of iodophor; and restocking was not permitted for at least two years. Even when all of these measures were implemented, scrapie recurred on several farms, indicating that the infectious agent survived for years in the environment, even as many as 16 years after restocking (Georgsson and others 2006).

 

In the rest of the countries considered in the EFSA (2014) report, recommendations for disinfection measures were not specifically defined at the government level. In the report, the only recommendation that is made for sheep is repopulation with sheep with scrapie-resistant genotypes. This reduces the risk of scrapie recurrence but it is difficult to know its effect on the infection.

 

Until the EFSA was established (in May 2003), scientific opinions about TSE s were provided by the Scientific Steering Committee (SSC) of the EC, whose advice regarding inactivation procedures focused on treating animal waste at high temperatures (150°C for three hours) and high pressure alkaline hydrolysis (SSC 2003). At the same time, the TSE Risk Management Subgroup of the Advisory Committee on Dangerous Pathogens (ACDP) in the UK published guidance on safe working and the prevention of TSE infection. Annex C of the ACDP report established that sodium hypochlorite was considered to be effective, but only if 20,000 ppm of available chlorine was present for at least one hour, which has practical limitations such as the release of chlorine gas, corrosion, incompatibility with formaldehyde, alcohols and acids, rapid inactivation of its active chemicals and the stability of dilutions (ACDP 2009).

 

In an international context, the World Organisation for Animal Health (OIE) does not recommend a specific disinfection protocol for prion agents in its Terrestrial Code or Manual. Chapter 4.13 of the Terrestrial Code, General recommendations on disinfection and disinsection (OIE 2014), focuses on foot-and-mouth disease virus, mycobacteria and Bacillus anthracis, but not on prion disinfection. Nevertheless, the last update published by the OIE on bovine spongiform encephalopathy (OIE 2012) indicates that few effective decontamination techniques are available to inactivate the agent on surfaces, and recommends the removal of all organic material and the use of sodium hydroxide, or a sodium hypochlorite solution containing 2 per cent available chlorine, for more than one hour at 20ºC.

 

The World Health Organization outlines guidelines for the control of TSE s, and also emphasises the importance of mechanically cleaning surfaces before disinfection with sodium hydroxide or sodium hypochlorite for one hour (WHO 1999).

 

Finally, the relevant agencies in both Canada and the USA suggest that the best treatments for surfaces potentially contaminated with prions are sodium hydroxide or sodium hypochlorite at 20,000 ppm. This is a 2 per cent solution, while most commercial household bleaches contain 5.25 per cent sodium hypochlorite. It is therefore recommended to dilute one part 5.25 per cent bleach with 1.5 parts water (CDC 2009, Canadian Food Inspection Agency 2013).

 

So what should we do about disinfection against prions? First, it is suggested that a single protocol be created by international authorities to homogenise inactivation procedures and enable their application in all scrapie-affected countries. Sodium hypochlorite with 20,000 ppm of available chlorine seems to be the procedure used in most countries, as noted in a paper summarised on p 99 of this issue of Veterinary Record (Hawkins and others 2015). But are we totally sure of its effectiveness as a preventive measure in a scrapie outbreak? Would an in-depth study of the recurrence of scrapie disease be needed?

 

What we can conclude is that, if we want to fight prion diseases, and specifically classical scrapie, we must focus on the accuracy of diagnosis, monitoring and surveillance; appropriate animal identification and control of movements; and, in the end, have homogeneous and suitable protocols to decontaminate and disinfect lambing barns, sheds and equipment available to veterinarians and farmers. Finally, further investigations into the resistance of prion proteins in the diversity of environmental surfaces are required.

 

References

 

snip...

 

98 | Veterinary Record | January 24, 2015

 


 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 

Steve A. C. Hawkins, MIBiol, Pathology Department1, Hugh A. Simmons, BVSc MRCVS, MBA, MA Animal Services Unit1, Kevin C. Gough, BSc, PhD2 and Ben C. Maddison, BSc, PhD3 + Author Affiliations

 

1Animal and Plant Health Agency, Woodham Lane, New Haw, Addlestone, Surrey KT15 3NB, UK 2School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK 3ADAS UK, School of Veterinary Medicine and Science, The University of Nottingham, Sutton Bonington, Loughborough, Leicestershire LE12 5RD, UK E-mail for correspondence: ben.maddison@adas.co.uk Abstract Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

 

SNIP...

 

Discussion

 

Thorough pressure washing of a pen had no effect on the amount of bioavailable scrapie infectivity (pen B). The routine removal of prions from surfaces within a laboratory setting is treatment for a minimum of one hour with 20,000 ppm free chlorine, a method originally based on the use of brain macerates from infected rodents to evaluate the effectiveness of decontamination (Kimberlin and others 1983). Further studies have also investigated the effectiveness of hypochlorite disinfection of metal surfaces to simulate the decontamination of surgical devices within a hospital setting. Such treatments with hypochlorite solution were able to reduce infectivity by 5.5 logs to lower than the sensitivity of the bioassay used (Lemmer and others 2004). Analogous treatment of the pen surfaces did not effectively remove the levels of scrapie infectivity over that of the control pens, indicating that this method of decontamination is not effective within a farm setting. This may be due to the high level of biological matrix that is present upon surfaces within the farm environment, which may reduce the amount of free chlorine available to inactivate any infectious prion. Remarkably 1/5 sheep introduced into pen D had also became scrapie positive within nine months, with all animals in this pen being RAMALT positive by 18 months of age. Pen D was no further away from the control pen (pen A) than any of the other pens within this barn. Localised hot spots of infectivity may be present within scrapie-contaminated environments, but it is unlikely that pen D area had an amount of scrapie contamination that was significantly different than the other areas within this building. Similarly, there were no differences in how the biosecurity of pen D was maintained, or how this pen was ventilated compared with the other pens. This observation, perhaps, indicates the slower kinetics of disease uptake within this pen and is consistent with a more thorough prion removal and recontamination. These observations may also account for the presence of inadvertent scrapie cases within other studies, where despite stringent biosecurity, control animals have become scrapie positive during challenge studies using barns that also housed scrapie-affected animals (Ryder and others 2009). The bioassay data indicate that the exposure of the sheep to a farm environment after decontamination efforts thought to be effective in removing scrapie is sufficient for the animals to become infected with scrapie. The main exposure routes within this scenario are likely to be via the oral route, during feeding and drinking, and respiratory and conjunctival routes. It has been demonstrated that scrapie infectivity can be efficiently transmitted via the nasal route in sheep (Hamir and others 2008), as is the case for CWD in both murine models and in white-tailed deer (Denkers and others 2010, 2013). Recently, it has also been demonstrated that CWD prions presented as dust when bound to the soil mineral montmorillonite can be infectious via the nasal route (Nichols and others 2013). When considering pens C and D, the actual source of the infectious agent in the pens is not known, it is possible that biologically relevant levels of prion survive on surfaces during the decontamination regimen (pen C). With the use of galvanising and painting (pen D) covering and sealing the surface of the pen, it is possible that scrapie material recontaminated the pens by the movement of infectious prions contained within dusts originating from other parts of the barn that were not decontaminated or from other areas of the farm.

 

Given that scrapie prions are widespread on the surfaces of affected farms (Maddison and others 2010a), irrespective of the source of the infectious prions in the pens, this study clearly highlights the difficulties that are faced with the effective removal of environmentally associated scrapie infectivity. This is likely to be paralleled in CWD which shows strong similarities to scrapie in terms of both the dissemination of prions into the environment and the facile mode of disease transmission. These data further contribute to the understanding that prion diseases can be highly transmissible between susceptible individuals not just by direct contact but through highly stable environmental reservoirs that are refractory to decontamination.

 

The presence of these environmentally associated prions in farm buildings make the control of these diseases a considerable challenge, especially in animal species such as goats where there is lack of genetic resistance to scrapie and, therefore, no scope to re-stock farms with animals that are resistant to scrapie.

 

Scrapie Sheep Goats Transmissible spongiform encephalopathies (TSE) Accepted October 12, 2014. Published Online First 31 October 2014

 


 

Monday, November 3, 2014

 

Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination

 


 

PPo3-22:

 

Detection of Environmentally Associated PrPSc on a Farm with Endemic Scrapie

 

Ben C. Maddison,1 Claire A. Baker,1 Helen C. Rees,1 Linda A. Terry,2 Leigh Thorne,2 Susan J. Belworthy2 and Kevin C. Gough3 1ADAS-UK LTD; Department of Biology; University of Leicester; Leicester, UK; 2Veterinary Laboratories Agency; Surry, KT UK; 3Department of Veterinary Medicine and Science; University of Nottingham; Sutton Bonington, Loughborough UK

 

Key words: scrapie, evironmental persistence, sPMCA

 

Ovine scrapie shows considerable horizontal transmission, yet the routes of transmission and specifically the role of fomites in transmission remain poorly defined. Here we present biochemical data demonstrating that on a scrapie-affected sheep farm, scrapie prion contamination is widespread. It was anticipated at the outset that if prions contaminate the environment that they would be there at extremely low levels, as such the most sensitive method available for the detection of PrPSc, serial Protein Misfolding Cyclic Amplification (sPMCA), was used in this study. We investigated the distribution of environmental scrapie prions by applying ovine sPMCA to samples taken from a range of surfaces that were accessible to animals and could be collected by use of a wetted foam swab. Prion was amplified by sPMCA from a number of these environmental swab samples including those taken from metal, plastic and wooden surfaces, both in the indoor and outdoor environment. At the time of sampling there had been no sheep contact with these areas for at least 20 days prior to sampling indicating that prions persist for at least this duration in the environment. These data implicate inanimate objects as environmental reservoirs of prion infectivity which are likely to contribute to disease transmission.

 


 

2012

 

PO-039: A comparison of scrapie and chronic wasting disease in white-tailed deer

 

Justin Greenlee, Jodi Smith, Eric Nicholson US Dept. Agriculture; Agricultural Research Service, National Animal Disease Center; Ames, IA USA

 

snip...

 

The results of this study suggest that there are many similarities in the manifestation of CWD and scrapie in WTD after IC inoculation including early and widespread presence of PrPSc in lymphoid tissues, clinical signs of depression and weight loss progressing to wasting, and an incubation time of 21-23 months. Moreover, western blots (WB) done on brain material from the obex region have a molecular profile similar to CWD and distinct from tissues of the cerebrum or the scrapie inoculum. However, results of microscopic and IHC examination indicate that there are differences between the lesions expected in CWD and those that occur in deer with scrapie: amyloid plaques were not noted in any sections of brain examined from these deer and the pattern of immunoreactivity by IHC was diffuse rather than plaque-like.

 

*** After a natural route of exposure, 100% of WTD were susceptible to scrapie.

 

Deer developed clinical signs of wasting and mental depression and were necropsied from 28 to 33 months PI. Tissues from these deer were positive for PrPSc by IHC and WB. Similar to IC inoculated deer, samples from these deer exhibited two different molecular profiles: samples from obex resembled CWD whereas those from cerebrum were similar to the original scrapie inoculum. On further examination by WB using a panel of antibodies, the tissues from deer with scrapie exhibit properties differing from tissues either from sheep with scrapie or WTD with CWD. Samples from WTD with CWD or sheep with scrapie are strongly immunoreactive when probed with mAb P4, however, samples from WTD with scrapie are only weakly immunoreactive. In contrast, when probed with mAb’s 6H4 or SAF 84, samples from sheep with scrapie and WTD with CWD are weakly immunoreactive and samples from WTD with scrapie are strongly positive. This work demonstrates that WTD are highly susceptible to sheep scrapie, but on first passage, scrapie in WTD is differentiable from CWD.

 


 

2011

 

*** After a natural route of exposure, 100% of white-tailed deer were susceptible to scrapie.

 


 

Thursday, March 26, 2015

 

Increased Infectivity of Anchorless Mouse Scrapie Prions in Transgenic Mice Overexpressing Human Prion Protein

 


 

Sunday, March 29, 2015

 

Uncommon prion disease induced in macaque ten years after scrapie inoculation

 


 

Tuesday, December 16, 2014

 

Evidence for zoonotic potential of ovine scrapie prions

 

Hervé Cassard,1, n1 Juan-Maria Torres,2, n1 Caroline Lacroux,1, Jean-Yves Douet,1, Sylvie L. Benestad,3, Frédéric Lantier,4, Séverine Lugan,1, Isabelle Lantier,4, Pierrette Costes,1, Naima Aron,1, Fabienne Reine,5, Laetitia Herzog,5, Juan-Carlos Espinosa,2, Vincent Beringue5, & Olivier Andréoletti1, Affiliations Contributions Corresponding author Journal name: Nature Communications Volume: 5, Article number: 5821 DOI: doi:10.1038/ncomms6821 Received 07 August 2014 Accepted 10 November 2014 Published 16 December 2014 Article tools Citation Reprints Rights & permissions Article metrics

 

Abstract

 

Although Bovine Spongiform Encephalopathy (BSE) is the cause of variant Creutzfeldt Jakob disease (vCJD) in humans, the zoonotic potential of scrapie prions remains unknown. Mice genetically engineered to overexpress the human ​prion protein (tgHu) have emerged as highly relevant models for gauging the capacity of prions to transmit to humans. These models can propagate human prions without any apparent transmission barrier and have been used used to confirm the zoonotic ability of BSE. Here we show that a panel of sheep scrapie prions transmit to several tgHu mice models with an efficiency comparable to that of cattle BSE. The serial transmission of different scrapie isolates in these mice led to the propagation of prions that are phenotypically identical to those causing sporadic CJD (sCJD) in humans. These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions.

 

Subject terms: Biological sciences• Medical research At a glance

 


 

why do we not want to do TSE transmission studies on chimpanzees $

 

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

 

snip...

 

R. BRADLEY

 


 

Friday, January 30, 2015

 

Scrapie: a particularly persistent pathogen

 


 

Friday, April 17, 2015

 

Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

 

>>> show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 


 

Monday, March 09, 2015

 

Chronic Wasting Disease CWD TSE prion and human animal risk factor there from

 


 

Sunday, April 12, 2015

 

*** Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies 2014 Annual Report ***

 


 

Wednesday, April 15, 2015

 

KURU Transmissible Spongiform Encephalopthy TSE Prion Disease

 


 

 

 

TSS

Friday, April 17, 2015

Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay

 

Christopher J. Johnson1, Christina M. Carlson2, Aaron R. Morawski3, Alyson Manthei4, Neil R. Cashman5

 

1USGS National Wildlife Health Center, 2Department of Soil Science, University of Wisconsin–Madison, 3Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 4Merial Veterinary Scholars Program, School of Veterinary Medicine, University of Wisconsin–Madison, 5Department of Neurology, University of British Columbia

 

Summary

 

Measuring the barrier to the interspecies transmission of prion diseases is challenging and typically involves animal challenges or biochemical assays. Here, we present an in vitro prion protein conversion assay with the ability to predict species barriers.

 

Date Published: 3/10/2015, Issue 97; doi: 10.3791/52522

 

Keywords: Medicine, Issue 97, Prion, species barrier, conversion, immunoblotting, transmissible spongiform encephalopathy, interspecies transmission Cite this Article

 

Johnson, C. J., Carlson, C. M., Morawski, A. R., Manthei, A., Cashman, N. R. Assessing Transmissible Spongiform Encephalopathy Species Barriers with an In Vitro Prion Protein Conversion Assay. J. Vis. Exp. (97), e52522, doi:10.3791/52522 (2015). Abstract

 

Studies to understanding interspecies transmission of transmissible spongiform encephalopathies (TSEs, prion diseases) are challenging in that they typically rely upon lengthy and costly in vivo animal challenge studies. A number of in vitro assays have been developed to aid in measuring prion species barriers, thereby reducing animal use and providing quicker results than animal bioassays. Here, we present the protocol for a rapid in vitro prion conversion assay called the conversion efficiency ratio (CER) assay. In this assay cellular prion protein (PrPC) from an uninfected host brain is denatured at both pH 7.4 and 3.5 to produce two substrates. When the pH 7.4 substrate is incubated with TSE agent, the amount of PrPC that converts to a proteinase K (PK)-resistant state is modulated by the original host’s species barrier to the TSE agent. In contrast, PrPC in the pH 3.5 substrate is misfolded by any TSE agent. By comparing the amount of PK-resistant prion protein in the two substrates, an assessment of the host’s species barrier can be made. We show that the CER assay correctly predicts known prion species barriers of laboratory mice and, as an example, show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 


 

 

>>> show some preliminary results suggesting that bobcats (Lynx rufus) may be susceptible to white-tailed deer (Odocoileus virginianus) chronic wasting disease agent.

 

 

AD.63: Susceptibility of domestic cats to chronic wasting disease

 

Amy V.Nalls,1 Candace Mathiason,1 Davis Seelig,2 Susan Kraft,1 Kevin Carnes,1 Kelly Anderson,1 Jeanette Hayes-Klug1 and Edward A. Hoover1

 

1Colorado State University; Fort Collins, CO USA; 2University of Minnesota; Saint Paul, MN USA

 

Domestic and nondomestic cats have been shown to be susceptible to feline spongiform encephalopathy (FSE), almost certainly caused by consumption of bovine spongiform encephalopathy (BSE)-contaminated meat. Because domestic and free-ranging nondomestic felids scavenge cervid carcasses, including those in areas affected by chronic wasting disease (CWD), we evaluated the susceptibility of the domestic cat (Felis catus) to CWD infection experimentally. Cohorts of 5 cats each were inoculated either intracerebrally (IC) or orally (PO) with CWD-infected deer brain. At 40 and 42 mo post-inoculation, two IC-inoculated cats developed signs consistent with prion disease, including a stilted gait, weight loss, anorexia, polydipsia, patterned motor behaviors, head and tail tremors, and ataxia, and progressed to terminal disease within 5 mo. Brains from these two cats were pooled and inoculated into cohorts of cats by IC, PO, and intraperitoneal and subcutaneous (IP/SC) routes. Upon subpassage, feline-adapted CWD (FelCWD) was transmitted to all IC-inoculated cats with a decreased incubation period of 23 to 27 mo. FelCWD was detected in the brains of all the symptomatic cats by western blotting and immunohistochemistry and abnormalities were seen in magnetic resonance imaging, including multifocal T2 fluid attenuated inversion recovery (FLAIR) signal hyper-intensities, ventricular size increases, prominent sulci, and white matter tract cavitation. Currently, 3 of 4 IP/SQ and 2 of 4 PO inoculared cats have developed abnormal behavior patterns consistent with the early stage of feline CWD. These results demonstrate that CWD can be transmitted and adapted to the domestic cat, thus raising the issue of potential cervid-to- feline transmission in nature.

 


 

www.landesbioscience.com

 

PO-081: Chronic wasting disease in the cat— Similarities to feline spongiform encephalopathy (FSE)

 


 


 


 


 

PO-081: Chronic wasting disease in the cat— Similarities to feline spongiform encephalopathy (FSE)

 


 


 

Thursday, May 31, 2012

 

CHRONIC WASTING DISEASE CWD PRION2012 Aerosol, Inhalation transmission, Scrapie, cats, species barrier, burial, and more

 


 

Monday, August 8, 2011

 

Susceptibility of Domestic Cats to CWD Infection

 


 

Sunday, August 25, 2013

 

Prion2013 Chronic Wasting Disease CWD risk factors, humans, domestic cats, blood, and mother to offspring transmission

 


 

Feline Spongiform Encephalopathy (FSE) FSE was first identified in the UK in 1990. Most cases have been reported in the UK, where the epidemic has been consistent with that of the BSE epidemic. Some other countries (e.g. Norway, Liechtenstein and France) have also reported cases.

 

Most cases have been reported in domestic cats but there have also been cases in captive exotic cats (e.g. Cheetah, Lion, Asian leopard cat, Ocelot, Puma and Tiger). The disease is characterised by progressive nervous signs, including ataxia, hyper-reactivity and behavioural changes and is fatal.

 

The chemical and biological properties of the infectious agent are identical to those of the BSE and vCJD agents. These findings support the hypothesis that the FSE epidemic resulted from the consumption of food contaminated with the BSE agent.

 

The FSE epidemic has declined as a result of tight controls on the disposal of specified risk material and other animal by-products.

 

References: Leggett, M.M. et al.(1990) A spongiform encephalopathy in a cat. Veterinary Record. 127. 586-588

 

Synge, B.A. et al. (1991) Spongiform encephalopathy in a Scottish cat. Veterinary Record. 129. 320

 

Wyatt, J. M. et al. (1991) Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Veterinary Record. 129. 233.

 

Gruffydd-Jones, T. J.et al.. (1991) Feline spongiform encephalopathy. J. Small Animal Practice. 33. 471-476.

 

Pearson, G. R. et al. (1992) Feline spongiform encephalopathy: fibril and PrP studies. Veterinary Record. 131. 307-310.

 

Willoughby, K. et al. (1992) Spongiform encephalopathy in a captive puma (Felis concolor). Veterinary Record. 131. 431-434.

 

Fraser, H. et al. (1994) Transmission of feline spongiform encephalopathy to mice. Veterinary Record 134. 449.

 

Bratberg, B. et al. (1995) Feline spongiform encephalopathy in a cat in Norway. Veterinary Record 136. 444

 

Baron, T. et al. (1997) Spongiform encephalopathy in an imported cheetah in France. Veterinary Record 141. 270-271

 

Zanusso, G et al. (1998) Simultaneous occurrence of spongiform encephalopathy in a man and his cat in Italy. Lancet, V352, N9134, OCT 3, Pp 1116-1117.

 

Ryder, S.J. et al. (2001) Inconsistent detection of PrP in extraneural tissues of cats with feline spongiform encephalopathy. Veterinary Record 146. 437-441

 

Kelly, D.F. et al. (2005) Neuropathological findings in cats with clinically suspect but histologically unconfirmed feline spongiform encephalopathy. Veterinary Record 156. 472-477.

 


 

3 further cheetah cases have occured, plus 1 lion, plus all the primates, and 20 additional house cats. Nothing has been published on any of these UK cases either. One supposes the problem here with publishing is that many unpublished cases were _born_ long after the feed "ban". Caught between a rock and a hard place: leaky ban or horizontal transmission (or both).

 


 


 

YOU explained that imported crushed heads were extensively used in the petfood industry...

 


 

In particular I do not believe one can say that the levels of the scrapie agent in pet food are so low that domestic animals are not exposed...

 


 


 

on occassions, materials obtained from slaughterhouses will be derived from sheep affected with scrapie or cattle that may be incubating BSE for use in petfood manufacture...

 


 

*** Meldrum's notes on pet foods and materials used

 


 

*** BSE & Pedigree Petfoods ***

 


 

In 2003, Denver Post reporter Theo Stein interviewed scientists about CWD spreading though deer and elk in Colorado. Dr. Valerius Geist, who paradoxically has become a darling of anti-wolfers, made this assertion about the significance of wolves in containing CWD spread via proteins called prions.

 

“Wolves will certainly bring the disease to a halt,” he said. “They will remove infected individuals and clean up carcasses that could transmit the disease.”

 

Stein added that “Geist and Princeton University biologist Andrew Dobson theorize that killing off the wolf allowed CWD to take hold in the first place.”

 

Wolves aren’t alone. In a 2009 study titled “Mountain lions prey selectively on prion-infected mule deer,” researchers in Colorado discovered that “adult mule deer killed by mountain lions were more likely to be prion-infected than were deer killed more randomly … suggesting that mountain lions were selecting for infected individuals when they targeted adult deer.”

 


 

NO, NO, NOT NO, BUT HELL KNOW !!!

 

PLEASE be careful what you ask for.

 

recently, canine spongiform encephalopathy has been confirmed.

 

I proved this in 2005, with a letter from MAFF/DEFRA et al confirming my suspicions of the ‘hound study’ way back. this was covered up. see documents below.

 

also, recently, cwd to the domestic cat is a great concern.

 

even though to date, as far as I am aware of, the cwd study on the mountain lion has not produced any confirmation yet, we already know that the feline species is highly succeptible to the TSE prion. domestic cats and the exotic zoo big cats.

 

so in my honest opinion, any program that would use wild animals to prey on other wild animals, as a tool to help curb CWD TSE prion disease, would only help enhance the spread of disease, and it would only help spread the disease to other species. ...TSS

 

Monday, February 14, 2011

 

THE ROLE OF PREDATION IN DISEASE CONTROL: A COMPARISON OF SELECTIVE AND NONSELECTIVE REMOVAL ON PRION DISEASE DYNAMICS IN DEER

 

NO, NO, NOT NO, BUT HELL NO !

 

Journal of Wildlife Diseases, 47(1), 2011, pp. 78-93 © Wildlife Disease Association 2011

 


 

OR-09: Canine spongiform encephalopathy—A new form of animal prion disease

 

Monique David, Mourad Tayebi UT Health; Houston, TX USA

 

It was also hypothesized that BSE might have originated from an unrecognized sporadic or genetic case of bovine prion disease incorporated into cattle feed or even cattle feed contaminated with prion-infected human remains.1 However, strong support for a genetic origin of BSE has recently been demonstrated in an H-type BSE case exhibiting the novel mutation E211K.2 Furthermore, a specific prion protein strain causing BSE in cattle is believed to be the etiological agent responsible for the novel human prion disease, variant Creutzfeldt-Jakob disease (vCJD).3 Cases of vCJD have been identified in a number countries, including France, Italy, Ireland, the Netherlands, Canada, Japan, US and the UK with the largest number of cases. Naturally occurring feline spongiform encephalopathy of domestic cats4 and spongiform encephalopathies of a number of zoo animals so-called exotic ungulate encephalopathies5,6 are also recognized as animal prion diseases, and are thought to have resulted from the same BSE-contaminated food given to cattle and humans, although and at least in some of these cases, a sporadic and/or genetic etiology cannot be ruled out. The canine species seems to display resistance to prion disease and no single case has so far been reported.7,8 Here, we describe a case of a 9 week old male Rottweiler puppy presenting neurological deficits; and histological examination revealed spongiform vacuolation characteristic of those associated with prion diseases.9 Initial biochemical studies using anti-PrP antibodies revealed the presence of partially proteinase K-resistant fragment by western blotting. Furthermore, immunohistochemistry revealed spongiform degeneration consistent with those found in prion disease and displayed staining for PrPSc in the cortex.

 

Of major importance, PrPSc isolated from the Rottweiler was able to cross the species barrier transmitted to hamster in vitro with PMCA and in vivo (one hamster out of 5). Futhermore, second in vivo passage to hamsters, led to 100% attack rate (n = 4) and animals displayed untypical lesional profile and shorter incubation period.

 

In this study, we show that the canine species might be sensitive to prion disease and that PrPSc isolated from a dog can be transmitted to dogs and hamsters in vitro using PMCA and in vivo to hamsters.

 

If our preliminary results are confirmed, the proposal will have a major impact on animal and public health and would certainly lead to implementing new control measures for ‘canine spongiform encephalopathy’ (CSE).

 

References 1. Colchester AC, Colchester NT. The origin of bovine spongiform encephalopathy: the human prion disease hypothesis. Lancet 2005; 366:856-61; PMID:16139661; http:// dx.doi.org/10.1016/S0140-6736(05)67218-2.

 

2. Richt JA, Hall SM. BSE case associated with prion protein gene mutation. PLoS Pathog 2008; 4:e1000156; PMID:18787697; http://dx.doi.org/10.1371/journal. ppat.1000156.

 

3. Collinge J. Human prion diseases and bovine spongiform encephalopathy (BSE). Hum Mol Genet 1997; 6:1699-705; PMID:9300662; http://dx.doi.org/10.1093/ hmg/6.10.1699.

 

4. Wyatt JM, Pearson GR, Smerdon TN, Gruffydd-Jones TJ, Wells GA, Wilesmith JW. Naturally occurring scrapie-like spongiform encephalopathy in five domestic cats. Vet Rec 1991; 129:233-6; PMID:1957458; http://dx.doi.org/10.1136/vr.129.11.233.

 

5. Jeffrey M, Wells GA. Spongiform encephalopathy in a nyala (Tragelaphus angasi). Vet Pathol 1988; 25:398-9; PMID:3232315; http://dx.doi.org/10.1177/030098588802500514.

 

6. Kirkwood JK, Wells GA, Wilesmith JW, Cunningham AA, Jackson SI. Spongiform encephalopathy in an arabian oryx (Oryx leucoryx) and a greater kudu (Tragelaphus strepsiceros). Vet Rec 1990; 127:418-20; PMID:2264242.

 

7. Bartz JC, McKenzie DI, Bessen RA, Marsh RF, Aiken JM. Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis. J Gen Virol 1994; 75:2947-53; PMID:7964604; http://dx.doi.org/10.1099/0022-1317- 75-11-2947.

 

8. Lysek DA, Schorn C, Nivon LG, Esteve-Moya V, Christen B, Calzolai L, et al. Prion protein NMR structures of cats, dogs, pigs, and sheep. Proc Natl Acad Sci U S A 2005; 102:640-5; PMID:15647367; http://dx.doi.org/10.1073/pnas.0408937102.

 

9. Budka H. Neuropathology of prion diseases. Br Med Bull 2003; 66:121-30; PMID:14522854; http://dx.doi.org/10.1093/bmb/66.1.121.

 


 

Monday, March 26, 2012

 

CANINE SPONGIFORM ENCEPHALOPATHY: A NEW FORM OF ANIMAL PRION DISEASE

 


 

Monday, March 8, 2010

 

Canine Spongiform Encephalopathy aka MAD DOG DISEASE

 


 

=======================================

 

2013

 

Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE.

 

=======================================

 

Neurobiology of Disease

 

Bovine Spongiform Encephalopathy Induces Misfolding of Alleged Prion-Resistant Species Cellular Prion Protein without Altering Its Pathobiological Features

 

Enric Vidal3, Natalia Fernández-Borges1, Belén Pintado4, Montserrat Ordóñez3, Mercedes Márquez6, Dolors Fondevila5,6, Juan María Torres7, Martí Pumarola5,6, and Joaquín Castilla1,2 + Author Affiliations

 

1CIC bioGUNE, 48160 Derio, Bizkaia, Spain,

 

2IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Bizkaia, Spain,

 

3Centre de Recerca en Sanitat Animal, Campus de la Universitat Autònoma de Barcelona (UAB)-IRTA, 08193 Bellaterra, Barcelona, Spain,

 

4Centro Nacional de Biotecnología, Campus de Cantoblanco, 28049 Cantoblanco, Madrid, Spain,

 

5Department of Animal Medicine and Surgery, Veterinary Faculty, UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain,

 

6Murine Pathology Unit, Centre de Biotecnologia Animal i Teràpia Gènica, UAB, 08193 Bellaterra (Cerdanyola del Vallès), Barcelona, Spain, and

 

7Centro de Investigación en Sanidad Animal-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28130 Valdeolmos, Madrid, Spain

 

Author contributions: E.V., N.F.-B., and J.C. designed research; E.V., N.F.-B., B.P., M.O., M.M., D.F., and J.C. performed research; E.V., N.F.-B., B.P., and J.C. contributed unpublished reagents/analytic tools; E.V., N.F.-B., B.P., M.O., M.M., D.F., J.M.T., M.P., and J.C. analyzed data; E.V. and J.C. wrote the paper.

 

Abstract

 

Bovine spongiform encephalopathy (BSE) prions were responsible for an unforeseen epizootic in cattle which had a vast social, economic, and public health impact. This was primarily because BSE prions were found to be transmissible to humans. Other species were also susceptible to BSE either by natural infection (e.g., felids, caprids) or in experimental settings (e.g., sheep, mice). However, certain species closely related to humans, such as canids and leporids, were apparently resistant to BSE. In vitro prion amplification techniques (saPMCA) were used to successfully misfold the cellular prion protein (PrPc) of these allegedly resistant species into a BSE-type prion protein. The biochemical and biological properties of the new prions generated in vitro after seeding rabbit and dog brain homogenates with classical BSE were studied. Pathobiological features of the resultant prion strains were determined after their inoculation into transgenic mice expressing bovine and human PrPC. Strain characteristics of the in vitro-adapted rabbit and dog BSE agent remained invariable with respect to the original cattle BSE prion, suggesting that the naturally low susceptibility of rabbits and dogs to prion infections should not alter their zoonotic potential if these animals became infected with BSE. This study provides a sound basis for risk assessment regarding prion diseases in purportedly resistant species.

 

Received January 18, 2013. Revision received March 7, 2013. Accepted March 23, 2013. Copyright © 2013 the authors 0270-6474/13/337778-09$15.00/0

 


 

2005

 

DEFRA Department for Environment, Food & Rural Affairs

 

Area 307, London, SW1P 4PQ Telephone: 0207 904 6000 Direct line: 0207 904 6287 E-mail: h.mcdonagh.defra.gsi.gov.uk

 

GTN: FAX:

 

Mr T S Singeltary P.O. Box 42 Bacliff Texas USA 77518

 

21 November 2001

 

Dear Mr Singeltary

 

TSE IN HOUNDS

 

Thank you for e-mail regarding the hounds survey. I am sorry for the long delay in responding.

 

As you note, the hound survey remains unpublished. However the Spongiform Encephalopathy Advisory Committee (SEAC), the UK Government's independent Advisory Committee on all aspects related to BSE-like disease, gave the hound study detailed consideration at their meeting in January 1994. As a summary of this meeting published in the BSE inquiry noted, the Committee were clearly concerned about the work that had been carried out, concluding that there had clearly been problems with it, particularly the control on the histology, and that it was more or less inconclusive. However was agreed that there should be a re-evaluation of the pathological material in the study.

 

Later, at their meeting in June 95, The Committee re-evaluated the hound study to see if any useful results could be gained from it. The Chairman concluded that there were varying opinions within the Committee on further work. It did not suggest any further transmission studies and thought that the lack of clinical data was a major weakness.

 

Overall, it is clear that SEAC had major concerns about the survey as conducted. As a result it is likely that the authors felt that it would not stand up to r~eer review and hence it was never published. As noted above, and in the detailed minutes of the SEAC meeting in June 95, SEAC considered whether additional work should be performed to examine dogs for evidence of TSE infection. Although the Committee had mixed views about the merits of conducting further work, the Chairman noted that when the Southwood Committee made their recommendation to complete an assessment of possible spongiform disease in dogs, no TSEs had been identified in other species and hence dogs were perceived as a high risk population and worthy of study. However subsequent to the original recommendation, made in 1990, a number of other species had been identified with TSE ( e.g. cats) so a study in hounds was less

 


 

As this study remains unpublished, my understanding is that the ownership of the data essentially remains with the original researchers. Thus unfortunately, I am unable to help with your request to supply information on the hound survey directly. My only suggestion is that you contact one of the researchers originally involved in the project, such as Gerald Wells. He can be contacted at the following address.

 

Dr Gerald Wells, Veterinary Laboratories Agency, New Haw, Addlestone, Surrey, KT 15 3NB, UK

 

You may also wish to be aware that since November 1994 all suspected cases of spongiform encephalopathy in animals and poultry were made notifiable. Hence since that date there has been a requirement for vets to report any suspect SE in dogs for further investigation. To date there has never been positive identification of a TSE in a dog.

 

I hope this is helpful

 

Yours sincerely 4

 

HUGH MCDONAGH BSE CORRESPONDENCE SECTION

 

======================================

 

HOUND SURVEY

 

I am sorry, but I really could have been a co-signatory of Gerald's minute.

 

I do NOT think that we can justify devoting any resources to this study, especially as larger and more important projects such as the pathogenesis study will be quite demanding.

 

If there is a POLITICAL need to continue with the examination of hound brains then it should be passed entirely to the VI Service.

 

J W WILESMITH Epidemiology Unit 18 October 1991

 

Mr. R Bradley

 

cc: Mr. G A H Wells

 


 

3.3. Mr R J Higgins in conjunction with Mr G A Wells and Mr A C Scott would by the end of the year, indentify the three brains that were from the ''POSITIVE'' end of the lesion spectrum.

 


 

TSE in dogs have not been documented simply because OF THE ONLY STUDY, those brain tissue samples were screwed up too. see my investigation of this here, and to follow, later follow up, a letter from defra, AND SEE SUSPICIOUS BRAIN TISSUE SAF's. ...TSS

 


 

TSE & HOUNDS

 

GAH WELLS (very important statement here...TSS)

 

HOUND STUDY

 

AS implied in the Inset 25 we must not _ASSUME_ that transmission of BSE to other species will invariably present pathology typical of a scrapie-like disease.

 

snip...

 


 

76 pages on hound study;

 

snip...

 


 

The spongiform changes were not pathognomonic (ie. conclusive proof) for prion disease, as they were atypical, being largely present in white matter rather than grey matter in the brain and spinal cord. However, Tony Scott, then head of electron microscopy work on TSEs, had no doubt that these SAFs were genuine and that these hounds therefore must have had a scrapie-like disease. I reviewed all the sections myself (original notes appended) and although the pathology was not typical, I could not exclude the possibility that this was a scrapie-like disorder, as white matter vacuolation is seen in TSEs and Wallerian degeneration was also present in the white matter of the hounds, another feature of scrapie.

 

38.I reviewed the literature on hound neuropathology, and discovered that micrographs and descriptive neuropathology from papers on 'hound ataxia' mirrored those in material from Robert Higgins' hound survey. Dr Tony Palmer (Cambridge) had done much of this work, and I obtained original sections from hound ataxia cases from him. This enabled me provisionally to conclude that Robert Higgins had in all probability detected hound ataxia, but also that hound ataxia itself was possibly a TSE. Gerald Wells confirmed in 'blind' examination of single restricted microscopic fields that there was no distinction between the white matter vacuolation present in BSE and scrapie cases, and that occurring in hound ataxia and the hound survey cases.

 

39.Hound ataxia had reportedly been occurring since the 1930's, and a known risk factor for its development was the feeding to hounds of downer cows, and particularly bovine offal. Circumstantial evidence suggests that bovine offal may also be causal in FSE, and TME in mink. Despite the inconclusive nature of the neuropathology, it was clearly evident that this putative canine spongiform encephalopathy merited further investigation.

 

40.The inconclusive results in hounds were never confirmed, nor was the link with hound ataxia pursued. I telephoned Robert Higgins six years after he first sent the slides to CVL. I was informed that despite his submitting a yearly report to the CVO including the suggestion that the hound work be continued, no further work had been done since 1991. This was surprising, to say the very least.

 

41.The hound work could have provided valuable evidence that a scrapie-like agent may have been present in cattle offal long before the BSE epidemic was recognised. The MAFF hound survey remains unpublished.

 

Histopathological support to various other published MAFF experiments

 

42.These included neuropathological examination of material from experiments studying the attempted transmission of BSE to chickens and pigs (CVL 1991) and to mice (RVC 1994).

 


 

It was thought likely that at least some, and probably all, of the cases in zoo animals were caused by the BSE agent. Strong support for this hypothesis came from the findings of Bruce and others (1994) ( Bruce, M.E., Chree, A., McConnell, I., Foster, J., Pearson, G. & Fraser, H. (1994) Transmission of bovine spongiform encephalopathy and scrapie to mice: strain variation and species barrier. Philosophical Transactions of the Royal Society B 343, 405-411: J/PTRSL/343/405 ), who demonstrated that the pattern of variation in incubation period and lesion profile in six strains of mice inoculated with brain homogenates from an affected kudu and the nyala, was similar to that seen when this panel of mouse strains was inoculated with brain from cattle with BSE. The affected zoo bovids were all from herds that were exposed to feeds that were likely to have contained contaminated ruminant-derived protein and the zoo felids had been exposed, if only occasionally in some cases, to tissues from cattle unfit for human consumption.

 

snip...

 


 

NEW URL ;

 


 

Friday, March 8, 2013

 

Dogs may have been used to make Petfood and animal feed

 


 


 


 

Tuesday, June 11, 2013

 

Weld County Bi-Products dba Fort Morgan Pet Foods 6/1/12 significant deviations from requirements in FDA regulations that are intended to reduce the risk of bovine spongiform encephalopathy (BSE) within the United States

 


 

 Comment from Terry Singeltary This is a Comment on the Food and Drug Administration (FDA) Notice: Draft Guidance for Industry on Ensuring Safety of Animal Feed Maintained and Fed On-Farm; Availability

 

For related information, Open Docket Folder Docket folder icon

 

--------------------------------------------------------------------------------

 

Show agency attachment(s) Attachments View All (0)

 

--------------------------------------------------------------------------------

 

Comment View document:

 


 


 

Guidance for Industry Ensuring Safety of Animal Feed Maintained and Fed On-Farm Draft Guidance FDA-2014-D-1180 Singeltary Comment

 

Greetings FDA et al,

 

I wish to comment on Guidance for Industry Ensuring Safety of Animal Feed Maintained and Fed On-Farm Draft Guidance FDA-2014-D-1180.

 

Once again, I wish to kindly bring up the failed attempt of the FDA and the ruminant to ruminant mad cow feed ban of August 4, 1997. This feed ban is still failing today, as we speak. Even more worrisome, is the fact it is still legal to feed cervids to cervids in the USA, in fact, the FDA only _recommends_ that deer and elk considered to be of _high_ risk for CWD do not enter the animal food chain, but there is NO law, its only voluntary, a recipe for a TSE prion disaster, as we have seen with the ruminant to ruminant feed ban for cattle, where in 2007, one decade post August 1997 mad cow feed ban, where in 2007 10,000,000 POUNDS OF BANNED BLOOD LACED MEAT AND BONE MEAL WHEN OUT INTO COMMERCE, TO BE FED OUT. Since 2007, these BSE feed ban rules have been breached time and time again. tons and tons of mad cow feed went out in Alabama as well, where one of the mad cows were documented, just the year before in 2006, and in 2013 and 2014, breaches so bad (OAI) Official Action Indicated were issued. those are like the one issued where 10 million pounds of banned blood laced meat and bone meal were fed out.

 

What is the use of having a Guidance for Industry Ensuring Safety of Animal Feed Maintained and Fed On-Farm Draft Guidance FDA-2014-D-1180, if it cannot be enforced, as we have seen with a mandatory ruminant to ruminant feed ban?

 

I strenuously once again urge the FDA and its industry constituents, to make it MANDATORY that all ruminant feed be banned to all ruminants, and this should include all cervids as soon as possible for the following reasons...

 

======

 

In the USA, under the Food and Drug Administrations BSE Feed Regulation (21 CFR 589.2000) most material (exceptions include milk, tallow, and gelatin) from deer and elk is prohibited for use in feed for ruminant animals. With regards to feed for non-ruminant animals, under FDA law, CWD positive deer may not be used for any animal feed or feed ingredients. For elk and deer considered at high risk for CWD, the FDA recommends that these animals do not enter the animal feed system.

 

***However, this recommendation is guidance and not a requirement by law.

 

======

 

31 Jan 2015 at 20:14 GMT

 

*** Ruminant feed ban for cervids in the United States? ***

 

31 Jan 2015 at 20:14 GMT

 


 

19 May 2010 at 21:21 GMT

 

*** Singeltary reply ; Molecular, Biochemical and Genetic Characteristics of BSE in Canada Singeltary reply ;

 


 

Tuesday, December 23, 2014

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2014 BSE TSE PRION

 


 

2013

 

Sunday, December 15, 2013

 

FDA PART 589 -- SUBSTANCES PROHIBITED FROM USE IN ANIMAL FOOD OR FEED VIOLATIONS OFFICIAL ACTION INDICATED OAI UPDATE DECEMBER 2013 UPDATE

 


 

DOCKET-- 03D-0186 -- FDA Issues Draft Guidance on Use of Material From Deer and Elk in Animal Feed; Availability Date: Fri, 16 May 2003 11:47:37 0500 EMC 1 Terry S. Singeltary Sr. Vol #: 1

 


 


 

PLEASE SEE FULL TEXT SUBMISSION ;

 


 

10,000,000+ LBS. of PROHIBITED BANNED MAD COW FEED I.E. BLOOD LACED MBM IN COMMERCE USA 2007

 

Date: March 21, 2007 at 2:27 pm PST

 

REASON

 

Blood meal used to make cattle feed was recalled because it was cross- contaminated with prohibited bovine meat and bone meal that had been manufactured on common equipment and labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

42,090 lbs.

 

DISTRIBUTION

 

WI

 

REASON

 

Products manufactured from bulk feed containing blood meal that was cross contaminated with prohibited meat and bone meal and the labeling did not bear cautionary BSE statement.

 

VOLUME OF PRODUCT IN COMMERCE

 

9,997,976 lbs.

 

DISTRIBUTION

 

ID and NV

 

END OF ENFORCEMENT REPORT FOR MARCH 21, 2007

 


 

Terry S. Singeltary Sr.

 

*** See attached file(s) No documents available. Attachments View All (1) Guidance for Industry Ensuring Safety of Animal Feed Maintained and Fed On-Farm Terry Singeltary Comment View Attachment:

 


 

 

Sunday, April 5, 2015

 

*** Guidance for Industry Ensuring Safety of Animal Feed Maintained and Fed On-Farm Draft Guidance FDA-2014-D-1180 ***

 


 

 

Sunday, April 12, 2015

 

*** Research Project: Transmission, Differentiation, and Pathobiology of Transmissible Spongiform Encephalopathies 2014 Annual Report ***

 


 

 

Wednesday, April 15, 2015

 

KURU Transmissible Spongiform Encephalopthy TSE Prion Disease VIDEO

 


 

 

Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease

 

Received July 24, 2014; Accepted September 16, 2014; Published November 3, 2014

 


 

 

Singeltary comment ;

 


 

 

Saturday, December 13, 2014

 

Terry S. Singeltary Sr. Publications TSE prion disease

 

Diagnosis and Reporting of Creutzfeldt-Jakob Disease

 

Singeltary, Sr et al. JAMA.2001; 285: 733-734. Vol. 285 No. 6, February 14, 2001 JAMA

 

snip...

 


 

 

 

TSS