Saturday, September 22, 2018

Emerging Diseases, Infection Control & California Dental Practice Act

Emerging Diseases, Infection Control & California Dental Practice Act


CME

New diseases, as well as the return of some once thought eradicated diseases, are a major concern in the modern dental practice. It seems as if every few months a new disease is developing. The signs and symptoms of many emerging diseases such as Methicillin-resistant Staphylococcus aureus (MRSA), variant Creutzfeldt-Jakob (Mad Cow Disease), The Middle East respiratory syndrome coronavirus (MERS), Avian flu and the West Nile Virus will be described and effective preventive measures will be discussed. The course will also cover topics such as general disease transmission, universal and standard precautions, disinfection and sterilization as well as proper waste management.

The course reviews Cal-OSHA’s top 20 dental office violations, discuss the CDC guidelines as well as the current mandated minimum standards for infection control in the dental setting from the Dental Board of California regulations. Participants will be provided with an easy-to-apply checklist for reviewing their office’s compliance with infection control and safety policies and guidelines.

The section on the California Dental Practice Act will present the recent changes in the laws that impact the practice of dentistry. It will cover the topics necessary for renewal of your license, including your duties as a mandated reporter of child, elder and domestic partner abuse; violations of the Dental Practice Act; and powers of enforcement held by the Dental Board.

6 Continuing Education Credits

Venue: Herman Ostrow School of Dentistry of the University of Southern California

Date

September 22, 2018

Location

Los Angeles, California 90089, United States

Email

Website


https://www.mdlinx.com/dentistry/conferences/emerging-diseases-infection-control-california-dental-practice-act/259112/


greetings dental usc edu et al, 

i would kindly like to pass on some information on the pesky tse prion disease, and mrsa, both of which i am very familiar with.

i have had mrsa, damn near killed me back in 2001 from a neck surgery, 8 weeks vancomycin through long pic line, nasty stuff.
my mom died from hvCJD confirmed back in 1997, and i have been following that science closely, like a hawk. 

so, from a peon, about a prion, here goes...

to all medical, surgical, dental, blood, tissue, organs, hospitals, and doctors, please take heed.

the exposure to the tse prion aka mad cow type disease to these practitioners and warriors on the front lines, carrying for us all, please be warned, FORGET THE UK MAD COW HAMBURGER SCARE, that was nothing to what is going on in the USA right now. here in the USA and North America, the warriors must realize, humans here are/have been, exposed to the TSE Prion for decades, it's out of control in cervid, we just had another mad cow documented in Florida, and Scrapie has been here for eons, and they have no clue, as to just how bad, because usda/fsis/aphis/fda/oie et al have all rigged the deck. for Gods sake, the just discovered another mad cow, from a surveillance program that only now tests 20k a year, a figure they know is not enough to detect mad cow disease, BUT THEY DID, so how bad is it really? to top that off, we now know that cwd tse prion in cervid, which the USA is awash with, will transmit to macaque by oral route, our greatest fear, and we now know that cwd in cervid will transmit to pig by oral route and we now know that scrapie of sheep will transmit to pig by oral route. with that i tell you, our mad cow feed ban has NEVER banned either of those, and we have been feeding all that back to cows, and still do. it's been a shit show from our officials, and if you believe that cannot happen, then i only remind you of two things in our past history, documented, feds covered up asbestos and tobacco for 100 years while they knew it was killing our loved ones and friends. yep, that is a fact. with that all said, now think ALZHEIMER'S DISEASE, what if? what if it was a tse prion disease? 

i present to you the facts as i have come to know them...PREPARE FOR THE STORM!

this will be the full dose, so just plow through it, or not. but one thing you must remember, how many folks US citizens eat meat, beef, deer and elk, sheep, or work and butcher these products, (i am not against meat eating, i still eat meat, i don't want to eat tse prions, they can kill you), but all these folks, that then go on to have surgical, dental, donated tissue, blood, organs, they expose the surgical arena, and can expose the workers there from. ...


Terry S. Singeltary Sr.


i don't care what folks eat, i am pro hunting, pro gun, i am a meat eater. BUT, when what you eat, or do, starts to have a fatal potential to do harm to my family, me, my friends, neighbors, your children, from ignorance of an industry that is full of greed (and i paint this with a very wide brush), then i get concerned. friendly fire, from second hand exposure is a very real and proven scientific fact, and as these TSE Prion strains mutate, they can become very dangerous. iatrogenic TSE Prion disease should concern all. you consume a cervid that is cwd postive, and you become exposed, then years later go on to have some sort of medical surgical procedure, then you have the potential to expose that complete surgical arena...

the tse prion aka mad cow type disease is not your normal pathogen. 

The TSE prion disease survives ashing to 600 degrees celsius, that’s around 1112 degrees farenheit. 

you cannot cook the TSE prion disease out of meat. 

you can take the ash and mix it with saline and inject that ash into a mouse, and the mouse will go down with TSE. 

Prion Infected Meat-and-Bone Meal Is Still Infectious after Biodiesel Production as well. 

the TSE prion agent also survives Simulated Wastewater Treatment Processes. 

IN fact, you should also know that the TSE Prion agent will survive in the environment for years, if not decades. 

you can bury it and it will not go away. 

The TSE agent is capable of infected your water table i.e. Detection of protease-resistant cervid prion protein in water from a CWD-endemic area. 

it’s not your ordinary pathogen you can just cook it out and be done with. 

***> that’s what’s so worrisome about Iatrogenic mode of transmission, a simple autoclave will not kill this TSE prion agent.

1: J Neurol Neurosurg Psychiatry 1994 Jun;57(6):757-8 

***> Transmission of Creutzfeldt-Jakob disease to a chimpanzee by electrodes contaminated during neurosurgery. 

Gibbs CJ Jr, Asher DM, Kobrine A, Amyx HL, Sulima MP, Gajdusek DC. 

Laboratory of Central Nervous System Studies, National Institute of 

Neurological Disorders and Stroke, National Institutes of Health, 

Bethesda, MD 20892. 

Stereotactic multicontact electrodes used to probe the cerebral cortex of a middle aged woman with progressive dementia were previously implicated in the accidental transmission of Creutzfeldt-Jakob disease (CJD) to two younger patients. The diagnoses of CJD have been confirmed for all three cases. More than two years after their last use in humans, after three cleanings and repeated sterilisation in ethanol and formaldehyde vapour, the electrodes were implanted in the cortex of a chimpanzee. Eighteen months later the animal became ill with CJD. This finding serves to re-emphasise the potential danger posed by reuse of instruments contaminated with the agents of spongiform encephalopathies, even after scrupulous attempts to clean them. 

PMID: 8006664 [PubMed - indexed for MEDLINE] 



Infectivity in the rest of the body varies in different types of prion disease but is generally much less than in brain tissue. People with any form of prion disease are requested not to be blood or organ donors, and are requested to inform their doctor and dentist prior to any invasive medical procedures or dentistry.


As prions cannot be completely destroyed by conventional sterilisation procedures, transmission has also occurred inadvertently through the use of surgical instruments previously used during neurosurgery on a person with sporadic prion disease. Current Department of Health guidelines are that all surgical instruments used on medium or high infectivity tissues in a patient with suspected prion disease are quarantined and not re-used unless an alternative diagnosis is confirmed. Instruments used on patients with known prion disease are not reused.

Guidelines about infection control can be found at the Advisory Committee for Dangerous Pathogens website.

Guidance

Minimise transmission risk of CJD and vCJD in healthcare settings Prevention of CJD and vCJD by Advisory Committee on Dangerous Pathogens' Transmissible Spongiform Encephalopathy (ACDP TSE) Subgroup.

Published 27 November 2012 Last updated 10 August 2017 — see all updates From: Department of Health and Social Care

Published 27 November 2012 
Last updated 10 August 2017 - hide all updates
10 August 2017
Added explanatory diagrams to Annex J.
22 October 2015
Added updated document: Annex F: Endoscopy.
13 July 2015
Uploaded updated versions of Annex A1, Annex F and the Acknowledgements.
15 May 2015
Sections on Infection control and annexes C and F have been updated to reflect the latest scientific research.
13 May 2013
Updated version of Annex J on Presurgical Assessment
27 November 2012
First published.



Transmissible Spongiform Encephalopathy Agents: Safe Working and the Prevention of Infection: Annex J

Published: 31 July 2006

Revised and updated: August 2017

1

ANNEX J

Assessment to be carried out before surgery and/or endoscopy to identify patients with,
or at increased risk of, CJD or vCJD





Article

Observance of Sterilization Protocol Guideline Procedures of Critical Instruments for Preventing Iatrogenic Transmission of Creutzfeldt-Jakob Disease in Dental Practice in France, 2017

Denis Bourgeois 1 , Claude Dussart 1 , Ina Saliasi 1 , Laurent Laforest 2 , Paul Tramini 3 and Florence Carrouel 1,*

1 Laboratory “Systemic Health Care”, EA4129, University Lyon, 69008 Lyon, France; denis.bourgeois@univ-lyon1.fr (D.B.); claude.dussart@univ-lyon1.fr (C.D.); inasaliasi@yahoo.com (I.S.) 2 Department of Public Health, Faculty of Dental Medicine, University of Lyon, 69008 Lyon, France; laurent.laforest@univ-lyon1.fr 3 Department of Public Health, Faculty of Dental Medicine, University of Montpellier, 34090 Montpellier, France; paul.tramini@orange.fr * Correspondence: florence.carrouel@univ-lyon1.fr; Tel.: +33-4-78-78-57-44 Received: 18 March 2018; Accepted: 14 April 2018; Published: 25 April 2018 

Abstract: Effective sterilization of reusable instruments contaminated by Creutzfeldt–Jakob disease in dental care is a crucial issue for public health. The present cross-sectional study investigated how the recommended procedures for sterilization were implemented by French dental practices in real-world settings. A sample of dental practices was selected in the French Rhône-Alpes region. Data were collected by a self-questionnaire in 2016. Sterilization procedures (n = 33) were classified into 4 groups: (1) Pre-sterilization cleaning of reusable instruments; (2) Biological verification of sterilization cycles—Monitoring steam sterilization procedures; (3) Autoclave performance and practitioner knowledge of autoclave use; (4) Monitoring and documentation of sterilization procedures—Tracking and tracing the instrumentation. Answers were provided per procedure, along with the global implementation of procedures within a group (over 80% correctly performed). Then it was verified how adherence to procedure groups varied with the size of the dental practice and the proportion of dental assistants within the team. Among the 179 questionnaires available for the analyses, adherence to the recommended procedures of sterilization noticeably varied between practices, from 20.7% to 82.6%. The median percentages of procedures correctly implemented per practice were 58.1%, 50.9%, 69.2% and 58.2%, in Groups 1, 2, 3 and 4, respectively (corresponding percentages for performing over 80% of the procedures in the group: 23.4%, 6.6%, 46.6% and 38.6%). Dental practices ≥ 3 dental units performed significantly better (>80%) procedures of Groups 2 and 4 (p = 0.01 and p = 0.002, respectively), while no other significant associations emerged. As a rule, practices complied poorly with the recommended procedures, despite partially improved results in bigger practices. Specific training regarding sterilization procedures and a better understanding of the reasons leading to their non-compliance are needed.

Keywords: dental assistants; dentists; sterilization; dental instruments; cross infection; infection control; transmissible diseases; Creutzfeldt-Jakob disease

snip...

 4. Discussion

Prions, the infectious agent of CJD, differ from other infectious agents as their infectivity can entail conformational modifications of normal prions [30]. They may not be inactivated by means of routine surgical instrument sterilization procedures [31]. As a consequence, the sterilization of prions requires the denaturation of the protein, resulting in an inactivation of pathological prions, which lose their ability to induce an abnormal folding of normal prions [32]. The high resistance of prions to standard sterilization methods warrants special procedures in the reprocessing of surgical instruments [33]. Despite the emergence of recent studies, evidence remains limited on the quality of implementation of sterilization procedures in dental practices [26]. This is one of the few recent surveys conducted on this topic in French dental practices and specifically focused on sterilization processes of instruments. As a rule, the overall adherence level to procedures was unsatisfactory for most of the 179 dental practices. The percentages of practices correctly performing over 80% of the procedures ranged from 6.6% to 45.7% in the four groups.

Some differences were noted between procedure groups. While all procedures in Group 3 were properly implemented by over 60% of practices, virtually none were in Group 2, which presented the highest failure rate regarding adherence to the guidelines. Despite these differences, our findings suggest that adherence to the different sterilization procedures remains globally inadequate in the majority of dental practices. The best global implementation of procedure groups did not reach the 50% threshold (46.6% in Group 3). Our worrisome results align with those of preceding studies [34–36]. This unsatisfactory situation could possibly be explained by several factors. Firstly, an inadequate knowledge or understanding of some detailed procedures should not be overlooked. Surprisingly, the “No idea” reply did not appear frequently in our results. Other reasons could be a lack of motivation or practical organizational issues, difficulty in complying with or understanding the guidelines [37,38], practical organizational issues, or merely lack of time [39].

Non-employer practitioners report that they cannot be used for financial reasons. For dentists who have employed receptionists, 21% say they entrust their receptionists with performing sterilization. These tasks are not the legal responsibility of a receptionist. (Non-employer practitioners report that they find it impossible to employ appropriate staff for financial reasons. Consequently, 21% of employers of receptionists state that they entrust the latter with the task of sterilization. However, this task is not part of a receptionist’s legal job duties). In France, the personnel qualified to work in the dental office are mainly aide assistants and dental assistants. Receptionists and secretaries, as their name indicates, are strictly assigned to administrative and reception tasks and are therefore not authorized to provide medical assistance with regard to sterilization, preparation of equipment and assistance.

Interestingly, some factors influencing adherence level to sterilization procedures have been identified, such as the number of daily patients, dentist age and/or gender [40], and the level of information received by dental caregivers on iatrogenic infectious risk [39,41], but further evidence is needed.

As a rule, correct performance of global indicators did not significantly vary with the dental practice-related factors studied, except for Group 4, wherein results were significantly better in practices with 3 or more dental units. A significant impact of the size also emerged for Group 2, though interpretation requires caution due to the low percentage of success (6.6%). Better adherence to sterilization procedures in larger practices has been described [42]. Bigger practices could be endowed with more resources in terms of space and available staff. Surprisingly, an impact of size of practices was not seen in Groups 1 and 4. Additionally, the DA/dentist ratio seemed to have a more limited influence. Overall, these data suggest that improvement in adherence to procedures is desirable for most dental practices, even among those of bigger size.

Some limitations should be borne in mind. Regions in France have considerable discretionary power over infrastructural spending, e.g., education, health, universities and research, and assistance to business owners. This has meant that the heads of wealthy regions such as Rhône-Alpes can be Int. J. Environ. Res. Public Health 2018, 15, 853 13 of 16 high-profile positions. This is a restrictive criterion in our study that must be noted. In our study, a single DA of the practice completed the questionnaire on behalf of the whole team. Thus, we have no guarantee that identical replies would have been provided by any other DAs in practices with 2 or more DAs. We specifically focused on the indicators of sterilization for reusable instruments. The reusable critical instruments classified as being at high risk of infection primarily include invasive instrumentation (sensors, ... curette), and must be sterilized and kept sterile between each use. Other components of prevention, such as the presence of a dedicated area for the instrument cleaning, disinfections of surfaces, systematic hand washing, changing gloves after each patient, management of waste disposal, and water lines were not covered by the present study [43,44]. As our data originate from self-administered questionnaires, their validity may not be optimal, with a possible overestimation of adherence due to desirability bias, namely failure to report inadequate implementation of procedures. Our study sample, given the limited response rate, was not representative of the overall dental practices in France. Indeed, all of those enrolled in our study were endowed with one DA or more, whereas nearly half of dental practices have none at the national level. For these reasons, the actual adherence rate can reasonably be assumed to be even more alarming in a more representative sample or in French dental practices overall.

The present study bears implications both in terms of research and public health, given the risk of CJD infection contamination. Our findings underscore the need to strengthen the education of dentists and DAs toward improved implementation of procedures regarding sterilization of instruments. For better efficiency, a critical preliminary step should be the comprehensive investigation of the reasons why the different recommended procedures are inadequately performed by dental practices. Qualitative studies could contribute to identify these reasons, and particularly the different barriers encountered by dental practices. Before implementing any educational campaign, in view of choosing the optimal approach, it should be verified to which extent non-adherence to the different groups of procedures are intercorrelated with one another. It is crucial for all dental students to be up to date on current guidelines, equipment, and techniques for proper infection control. The gap found in our study between current scientific knowledge of the management of sterilization and their implementation in dental practices must challenge us. Identifying the cause of malfunctions should allow the necessary implementation of corrective and preventive measures.

However, education limited to a single session may not be sufficient to bring about any perennial change in daily behaviors. It does appear that an implementation strategy is required to encourage the implementation of the decontamination guidance [38]. Long-term regular training sessions could be useful, particularly in the case of deficient knowledge and/or awareness or motivation. Better adherence levels to sterilization procedures were consistently found when practices underwent continuous education [45,46], notably on prion contamination risk [47]. More generally, regular assessments of the quality of implementation of the different sterilization procedures are highly desirable at the national or regional level to monitor these public health issues on a regular basis.

5. Conclusions

In conclusion, the practitioner is obligated to provide results regarding sterilization. The practitioner, and no one else, is responsible for health safety and for infectious risks in his dental office. He is responsible for permanently establishing proof of his actions. These standard recommendations—simple, basic—may reduce the risk of CJD infections during care, but they must be impeccable in their implementation. Following the discovery of the tasks not being carried out according to the guidelines in force, it is urgent to anticipate and propose alternative measures, compulsory or not, for the near future.

Acknowledgments: The authors appreciate the valuable help of Garzuel, Hornet Company, Switzerland, for his technical advice.



Detection of Creutzfeldt-Jakob disease prions in skin: implications for healthcare 

Akin NihatView ORCID ID profile and Simon MeadEmail author Genome Medicine201810:22 https://doi.org/10.1186/s13073-018-0536-3© The Author(s). 2018 Published: 26 March 2018 

Editorial 

summary 

Evidence has recently been reported of prion seeding activity in skin tissue from patients with sporadic Creutzfeldt-Jakob disease (sCJD). This is relevant information for infection control measures during surgery. The work uses very sensitive prion assays now available for medical research, and may soon be adapted to related neurodegenerative disorders.

Prion diseases Prion diseases are a group of incurable neurodegenerative disorders marked by the accumulation of misfolded forms of the normal cellular prion protein (PrP). The concept of a proteinaceous pathogen or ‘prion’ responsible for the transmissibility of the diseases, although initially controversial, has become an influential concept in neurodegeneration research, but it is still unclear exactly which structures of abnormal PrP behave as prions. The most common human prion disease, sCJD, occurs at random in the population. However, this disease group is notorious for acquired forms: zoonotic variant CJD (vCJD) arises following dietary exposure to bovine spongiform encephalopathy (BSE) prions; and iatrogenic CJD arises from exposure to prions as a result of a medical procedure. Procedures known to have caused iatrogenic CJD include the use of cadaveric growth hormone, dura mater grafts, and, especially pertinent to a discussion about prions in skin, surgical instruments. Extensive measures are taken to prevent patient exposures to prions during medical or surgical procedures in those asymptomatically infected, or with early but unrecognised symptoms. Acquired prion diseases are very rare. In 2017, 113 deaths were recorded in the UK from definite or probable prion diseases, but none of these cases were thought to be acquired (National CJD Research and Surveillance Unit data, https://www.cjd.ed.ac.uk/).

Evidence for prions in skin Animal bioassay is the only method to definitively demonstrate prion infectivity, but these are expensive and time-consuming experiments. Many factors affect the efficiency of transmission in an experiment: inoculation route, PrP expression level of the inoculated animal, prion strain (comparable to virus strain), and the degree of homology in the primary sequence of PrP between host and inoculum. By varying these factors, experiments can be designed to optimise sensitivity, or model medical situations more realistically. Recently, Orrú and colleagues [1] demonstrated, for the first time, gold-standard evidence for the presence of human prions in skin, using a transmission study tuned to be sensitive: by intracerebral inoculation of inocula made from the skin of two patients with CJD, into mice that were engineered to express the human form of PrP.

Surrogate methods were also used to infer the presence of prions in skin tissue. These methods do not directly measure prion titres or infectivity but are fast, inexpensive, and sensitive. The disease process generates a multitude of abnormal forms of prion protein that can be either infectious or non-infectious. Many abnormal forms of prion protein have distinct biochemical properties such as relative protease resistance and staining properties of amyloid protein aggregates, and can be detected by histology or partial protease digestion and Western blotting. Orrú et al. [1] found only a faint PrP-immunoreactive band by Western blot from one of five sCJD patients despite using enhanced detection techniques. This finding is broadly consistent with previous studies [2].

More significantly, Orrú et al. [1] employed in vitro prion ‘seeding’ assays, which are able to detect miniscule amounts of disease-associated prion protein (~femtograms). The real-time quaking-induced conversion (RTQuIC) assay exploits the ability of disease-associated prion protein to template the misfolding of recombinant PrP through repeated cycles of mechanical agitation intended to break apart the forming amyloid. In a blinded analysis, Orrú et al. [1] demonstrated by RTQuIC the presence of prion protein amyloid in at least one of three skin samples from all 23 CJD patients with either vCJD or sCJD, but not in skin from any non-CJD control individuals. The concentrations of RTQuIC seeding activity were 1000- to 100,000-fold lower in skin than brain tissue from the same patient. These RTQuIC results are meaningful and quantitative, but a caveat is that the assay can amplify non-infectious prion protein aggregates; therefore, the assay results are a surrogate for prion titre only. Analysis of a larger dataset that includes samples from healthy elderly individuals and/or those with conditions that might be mistaken for CJD would increase confidence in the specificity of this approach for CJD diagnosis.

Variant CJD infection has been transmitted by blood or blood product transfusion on at least five occasions, which has led to restrictions from the blood donor pool for groups deemed to be at high risk. Approaches to detect variant CJD prions in blood samples using protein misfolding cyclic amplification (PMCA) have been described in two recent papers [3, 4]. PMCA disrupts aggregates using sonication rather than shaking, requires a biological source for normal PrP rather than a recombinant protein, and uses Western blot as a readout. In one study, blood from two donors who later developed vCJD also demonstrated the presence of prions by PMCA [4]. Data from these studies provide a key step toward the validation of PMCA technology as a blood-based diagnostic test for vCJD and support its potential for detecting pre-symptomatic patients. However, the prospect of using prion detection assays to ensure the safety of blood transfusion is mitigated by several technical challenges that have yet to be overcome. Thankfully, there have been no patients diagnosed with blood-transmitted variant CJD for 10 years.

Implications for infection control and diagnosis Reports of prion transmissions, whether experimental or observational, can sometimes result in excessive media attention and misunderstandings. On occasion, notably during the BSE crisis, media attention was justified and major policy decisions needed to be taken. Our role as research scientists is to carefully discuss the findings and limitations of our results, even if not fully conclusive, with the public and policymakers. Orrú and colleagues [1] discuss their results responsibly; they emphasise that prion disease is not known to be transmitted via casual skin–skin contact, but they highlight the potential for iatrogenic transmission from this tissue. They also accept that the extreme sensitivity of the assays and methodologies used, and low RTQuIC titres in skin relative to brain, makes the interpretation of these findings in real-life infection control scenarios ambiguous. Further animal bioassay studies of skin from patients with sCJD may help to clarify the extent of infectivity.

Over 40 years ago, the demonstration of iatrogenic neurosurgical transmission of CJD and the known resistance of prions to standard decontamination methods prompted epidemiological studies of surgery and risk of CJD [5]. Most studies adopted a case–control methodology to identify patients diagnosed with CJD and retrospectively review their surgical histories compared with matched controls. The results are inconclusive, which is perhaps unsurprising in view of the inherent potential for selection bias, recall bias, and that surgery may be carried out to investigate unrecognised early symptoms of CJD [5, 6].

What about CJD diagnosis? Skin biopsy samples in the study by Orrú et al. [1] were obtained mostly from deceased patients. It will be important to ascertain the chronology; that is, whether prions accumulated as an early or late feature of the disease. An earlier study by Glatzel et al. [2] demonstrated that sCJD patients with the highest level of abnormal PrP deposition in spleen and skeletal muscle also had atypical forms and the longest disease duration. Abnormal PrP has also been detected using RTQuIC of material obtained by brushing the olfactory mucosa in sCJD [7], and by adaptation of a blood-based assay to urine [8]. However, although these findings are insightful, the most reliable method of CJD diagnosis is RTQuIC assay using cerebrospinal fluid obtained by lumbar puncture and magnetic resonance brain imaging; both of these techniques are sensitive and highly specific and are a pre-requisite in the work-up of patients suspected to have CJD to exclude other conditions [9].

Conclusions and perspectives Abnormal PrP amplification technologies are incredibly sensitive assays that provide evidence for a wider tissue distribution for prions in sCJD and rapid detection in individual patients. Whether these developments will translate into improved infection control measures is a much more complicated question, as it is very hard to find evidence for ongoing person–person transmission with surgical instruments or blood–blood product transfusion. This may be because transmissions are not currently occurring in healthcare settings, or a consequence of the challenges of epidemiological investigation of a rare disorder with potentially very long incubation periods. In this context, any new infection control measures will need to be practical and proportionate.

An increasing body of experimental and observational evidence suggests that more common neurodegenerative diseases, such as Alzheimer’s and Parkinson’s diseases, share fundamental mechanistic similarities with prion disease [10]. Whilst these similarities were proposed following animal transmission experiments and the apparent spreading of protein pathologies in the brain, recent findings raise the possibility of iatrogenic amyloid-beta cerebral amyloid angiopathy in specific circumstances that parallel the experience of acquired prion diseases [11]. This should neither be surprising nor alarming news. In this respect, recent results illustrate the potential of tools developed for prion research for the wider field of neurodegeneration and encourage their adaptation to other misfolded proteins.

Abbreviations BSE: Bovine spongiform encephalopathy

 CJD: Creutzfeldt-Jakob disease

PMCA: Protein misfolding cyclic amplification

 PrP: Prion protein

RTQuIC: Real-time quaking-induced conversion assay

sCJD: Sporadic Creutzfeldt-Jakob disease

 vCJD: Variant Creutzfeldt-Jakob disease

Declarations Funding The authors are funded by the Medical Research Council (MRC UK). Some of their work is supported by the National Institute of Health Research’s (NIHR) Biomedical Research Centre at UCL Hospitals NHS Trust. SM is a National Institute for Health Research Senior Investigator. AN is an MRC Clinical Research Training Fellow. The views expressed in this article are those of the authors and not necessarily those of the NHS, the NIHR, the MRC, or the Department of Health.

Authors’ contributions Both authors read and approved the final manuscript.

Competing interests The authors declare that they have no competing interests.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

References ...snip...end




Does Poor Dental Health Have a Role in the Emergence of Variant Creutzfeldt Jakob Disease in the United Kingdom? 

Does Poor Dental Health Have a Role in the Emergence of Variant Creutzfeldt Jakob Disease in the United Kingdom? 

Robert Burnie, Roland L Salmon, Daniel R Thomas, Nigel Monaghan 

Abstract 

Introduction: Variant creutzfeldt jakob disease (vCJD) is the human neurological disease known to be caused by the same proteinaceous infectious agent (“prion”) that causes Bovine Spongiform Encephalopathy or "Mad Cow Disease". Two unusual and unexplained characteristics of the vCJD epidemic are its geographical distribution within the UK (about twice as frequent in Scotland and Northern England) and its median age of onset of 26 years that has remained unchanged over the fifteen years of the epidemic.

The hypothesis: Infection via the dental route as a consequence of poor dental health, most probably the presence of untreated decay may account for the geographical distribution of vCJD in the UK and offer an explanation for the constant median age of onset of the disease by representing a fixed stage in development.

Evaluation of the hypothesis: Analysis of existing data indicates that vCJD incidence by region and an index of dental health by region are positively correlated (r=0.737, p= 0.015). The hypothesis that infection via the dental route may explain the constant median age of onset and geographical distribution of vCJD could be investigated further with a case control study based on individual dental records and by further animal experiments to confirm the biological plausibility of this route. 

Key words: Variant creutzfeldt jakob disease; Infection; Dental health; Epidemiology. 

doi:10.5436/j.dehy.2011.2.00030 

snip...


Risk Assessment of Transmission of Sporadic Creutzfeldt-Jakob Disease in Endodontic Practice in Absence of Adequate Prion Inactivation 

Monday, December 31, 2007 

Risk Assessment of Transmission of Sporadic Creutzfeldt-Jakob Disease in Endodontic Practice in Absence of Adequate Prion Inactivation 

Risk Assessment of Transmission of Sporadic Creutzfeldt-Jakob Disease in Endodontic Practice in Absence of Adequate Prion Inactivation

Nadège Bourvis1,2, Pierre-Yves Boelle1,2,3, Jean-Yves Cesbron4,5,6, Alain-Jacques Valleron1,2,3*

1 Université Pierre et Marie Curie-Paris6, Unité de Recherche Epidémiologie-Systèmes d'information-Modélisation, UMR S 707, Paris, France, 2 INSERM, U707, Paris, France, 3 Assistance Publique-Hôpitaux de Paris (AP-HP), Unité de Santé Publique, Hôpital St Antoine, Paris, France, 4 Laboratoire Adaptation et de Pathogénie des Micro-organismes, Université Joseph Fourier, UMR 5163, Grenoble, France, 5 Centre National de la Recherche Scientifique (CNRS), UMR 5163, Grenoble, France, 6 Centre hospitalier universitaire (CHU) de Grenoble, Laboratoire d'Immunologie, Grenoble, France

Abstract

Background

Experimental results evidenced the infectious potential of the dental pulp of animals infected with transmissible spongiform encephalopathies (TSE). This route of iatrogenic transmission of sporadic Creutzfeldt-Jakob disease (sCJD) may exist in humans via reused endodontic instruments if inadequate prion decontamination procedures are used.

Methodology/Principal Findings

To assess this risk, 10 critical parameters in the transmission process were identified, starting with contamination of an endodontic file during treatment of an infectious sCJD patient and ending with possible infection of a subsequent susceptible patient. It was assumed that a dose-risk response existed, with no-risk below threshold values. Plausible ranges of those parameters were obtained through literature search and expert opinions, and a sensitivity analysis was conducted. Without effective prion-deactivation procedures, the risk of being infected during endodontic treatment ranged between 3.4 and 13 per million procedures. The probability that more than one case was infected secondary to endodontic treatment of an infected sCJD patient ranged from 47% to 77% depending on the assumed quantity of infective material necessary for disease transmission. If current official recommendations on endodontic instrument decontamination were strictly followed, the risk of secondary infection would become quasi-null.

Conclusion

The risk of sCJD transmission through endodontic procedure compares with other health care risks of current concern such as death after liver biopsy or during general anaesthesia. These results show that single instrument use or adequate prion-decontamination procedures like those recently implemented in dental practice must be rigorously enforced.

snip...

Discussion

The results of this modelling approach show that the risk of sCJD transmission due to the reuse of instruments during ET may not be ignored in absence of effective prion-decontamination procedures.

How should our conclusions be used in a public health assessment? First note that this risk is already of concern to national health agencies as well as to health professionals [25]–[27]. Our work makes it possible to go beyond a qualitative assessment, towards more quantitative predictions where all hypotheses are clearly stated. The conclusions of this approach may easily be updated as new data accrue.

The details of ET were obtained from the latest official reports in France and UK or from experts. We conducted a literature search to collect the best estimates available of the possible quantities of infectious material left on the instruments, and subsequently partially removed by the classical disinfection procedures used until the last years of the 20th century. We obtained similarly estimates of the values of brain infectivity and of the ratio of brain infectivity to pulp infectivity. These parameters were obtained from animal experiments as they are clearly unknown in humans.

A comparable approach can be found in the HPA report on vCJD transmission in dentistry with two notable differences [25]. First, the route of instrument contamination and subsequent transmission considered in the HPA report was a very rare accidental process: the abrasion of tonsillar tissue during dental care. On the contrary, we considered the process of accessing the dental pulp during ET as certain, which obviously leads to a higher risk. Second, the HPA report considered infectivity of tonsils to be 106–107 i/c ID50 per gram, while we used dental pulp with a slightly lower range of infectivity from 104-106i/c ID50 per gram ( = BI* BPR).

The hypotheses we used concerning the relationship between the estimated inoculums and the probability of infection are obviously critical. In our assessment, we postulated that too small an inoculum (below 10-1 and 10-2 ID50 were considered with functions ?1 and ?2) would not lead to infection, and that there was a linear dose–response relationship above this threshold. This effectively complies with the “zero risk below a threshold” hypothesis rather than with the “single infectious particle” hypothesis. There is indeed experimental evidence that even very small quantities of infectious material may trigger infection in mice [13], [28], and this hypothesis was previously used in assessing decontamination procedures[29]. However, we adopted a more conservative risk estimate.

The duration of the infectious period of CJD is unknown but could be very long. We used as a reference the incubation period estimated from hGH iatrogenic cases [30]. To make comparison easier, and for want of better or more recent evidence, the duration of the infectious period relative to incubation was the same as in the HPA report, i.e. 40% of the incubation period [25].

Our risk assessment should have used the prevalence of infectious sCJD in those undergoing ET instead of that in the general population. Presumably, the former is the largest and the risk was therefore minimized. Indeed, children, who do not develop sCJD are taken into account in the general population estimate, when that in ET patients concerns only adults.

The ranges of values of risk assessment generated with our model were broad. They mirror the current lack of knowledge and the uncertainties concerning data and hypotheses. However, our model makes it clear that the ET of the 20th century were not risk-free in terms of CJD. Therefore, our model suggests that patients may well have been contaminated at the end of 20th century, and still be in the latency period and at risk of transmitting the disease.

The estimated individual risk of sCJD transmission during ET was low in our assessment. However, these values compared with the mortality rates in general anaesthesia [31], transcutaneous liver biopsy [32] or voluntary abortion [33] which are of concern in the modern health care.

We also studied the possible impact of ET at a population level and showed that there was a high probability that the reproduction rate R exceeded 1 in the absence of effective prion decontamination of the instruments: one of the conditions for the initiation of an epidemic process is fulfilled. To date, epidemiological surveillance data did not evidence such an epidemic process. However, would our hypothesis be true, the increase in incidence could remain modest and hard to identify for dozens of years because the incidence of sCJD is low, the incubation period long and in competition with all mortality causes present. CJD surveillance systems is too recent to show such trends.

***###***

Vacuum autoclaving and porous-load autoclaving for 18 min at 134°C are currently recognised as appropriate methods for prion decontamination, leading to a reduction of the infectivity load by of 3–5 log10 or more. According to our model, this decontamination would prevent CJD transmission in dental practice, even considering that the residual infectivity is not strictly reduced to zero. These methods are recommended in official reports in various countries. However, in a US study conducted in 1996 [34], only 53% of dentists used autoclaves to decontaminate root-canal files. In a survey conducted in France in 2004, only 79% of dentists used an autoclave [35]. The problem of correct use of the autoclaves and regular checking of their efficacy has also been raised by many authors in several countries [34]. A recent survey on dental practice also showed that other elementary precautionary measures against CJD transmission were not widely respected. For example, the vast majority of dentists did not actively seek out patients at-risk for any form of CJD (sporadic, iatrogenic or familial) [36]. Therefore, in the current situation and despite recommended decontamination procedures, the risk of sCJD transmission during dental care might still not be zero. In any case, our findings constitute a strong argument for the strict respect of the official recommendations on decontamination procedures in dentistry, and even suggest that the cost-benefit of single-use endodontic instruments should be re-evaluated.

The risk analysis approach we have used relies on a “problem dissection” in which all components to a risk are identified and linked to the available scientific data, knowledge, and expert opinion. It may be of help in other emerging diseases, when data on the natural history of the disease and transmission are still scarce and clinical events cannot be observed directly. In all these cases, the output of the work will always be questionable, because of the lack of data, but the strength of the method is that its results and final statements are refutable as data accrues.

snip... end... tss





SEAC 99th meeting on Friday 14th December 2007

Greetings,

AS one of them _lay_ folks, one must only ponder ;

"WITH the Nor-98 now documented in five different states so far in the USA in 2007, and with the TWO atypical BSE H-BASE cases in Texas and Alabama, with both scrapie and CWD running rampant in the USA, IS there any concern from SEAC with the rise of sporadic CJD in the USA from ''UNKNOWN PHENOTYPE'', and what concerns if any, in relations to blood donations, surgery, optical, and dental, do you have with these unknown atypical phenotypes in both humans and animals in the USA ???"

"Does it concern SEAC, or is it of no concern to SEAC?"

"Should it concern USA animal and human health officials?"

snip...

----- Original Message -----

From: xxxxxxxxxx


Sent: Thursday, November 22, 2007 5:39 AM

Subject: QUESTION FOR SEAC

Mr Terry S Singeltary Sr., Bacliff, Texas 77518 USA.

Dear Mr Singeltary,

"Thank you for your e-mail of yesterday with the question for SEAC. I can confirm that this will be asked at the meeting on your behalf and the question and answer will appear in the minutes of the meeting which will be published on the SEAC Internet site."

snip...see full text ;



NOR-98 ATYPICAL SCRAPIE CASES USA

snip...

In FY 2007, 331 scrapie cases have been confirmed and reported by the National Veterinary Services Laboratories (NVSL), including 59* Regulatory Scrapie Slaughter Surveillance (RSSS) cases (Figure 5 and Slide 16). In FY 2007, two field cases, one validation case, and two RSSS cases were consistent with Nor-98 scrapie. The Nor98-like cases originated from flocks in California, Minnesota, Colorado, Wyoming and Indiana respectively. Nineteen cases of scrapie in goats have been reported since 1990 (Figure 6). The last goat case was reported in September 2007.

snip...

see full report here ;


P03.141

Aspects of the Cerebellar Neuropathology in Nor98

Gavier-Widén, D1; Benestad, SL2; Ottander, L1; Westergren, E11National Veterinary Insitute, Sweden; 2National Veterinary Institute, Norway

Nor98 is a prion disease of old sheep and goats. This atypical form of scrapie was first described in Norway in 1998. Several features of Nor98 were shown to be different from classical scrapie including the distribution of disease associated prion protein(PrPd) accumulation in the brain. The cerebellum is generally the most affected brain area in Nor98. The study here presented aimed at adding information on the neuropathology in the cerebellum of Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A panel of histochemical and immunohistochemical (IHC) stainings such as IHC for PrPd, synaptophysin, glial fibrillary acidic protein,amyloid, and cell markers for phagocytic cells were conducted. The type of histological lesions and tissue reactions were evaluated. The types of PrPd deposition were characterized. The cerebellar cortex was regularly affected, even though there was a variation in the severity of the lesions from case to case. Neuropil vacuolation was more marked in the molecular layer, but affected also the granular cell layer. There was a loss of granule cells. Punctate deposition of PrPd was characteristic. It was morphologically and in distribution identical with that of synaptophysin, suggesting that PrPd accumulates in the synaptic structures. PrPd was also observed in the granule cell layer and in the white matter. The pathology features of Nor98 in the cerebellum of the affected sheep showed similarities with those of sporadic Creutzfeldt-Jakob disease in humans.


It will be critical to see whether the atypical BSE isolates behave similarly to typical BSE isolates in terms of transmissibility and disease pathogenesis. If transmission occurs, tissue distribution comparisons will be made between cattle infected with the atypical BSE isolate and the U.S. BSE isolate. Differences in tissue distribution could require new regulations regarding specific risk material (SRM) removal.


snip...


[/quote]

Terry S. Singeltary Sr. [flounder@wt.net]

Monday, January 08, 200l 3:03 PM

freas@CBS5055530.CBER.FDA.GOV CJDIBSE (aka madcow) Human/Animal TSE’s--U.S.--Submission To Scientific Advisors and Consultants Staff January 2001 Meeting (short version)

Greetings again Dr. Freas and Committee Members,

snip...

with same feeding and rendering practices as that of U.K. for years and years, same scrapie infected sheep used in feed, for years and years, 950 scrapie infect FLOCKS in the U.S. and over 20 different strains of scrapie known to date. (hmmm, i am thinking why there is not a variant scrapie, that is totally different than all the rest)? just being sarcastic. ...

snip...end... see full text Monday, January 08, 200l 3:03 PM ;




SEAC 99 DECEMBER 14, 2007

Conclusions

14. Preliminary research findings suggest that the potential risk of transmission of vCJD via dental procedures may be greater than previously anticipated. Although this research is incomplete, uses an animal model exposed to relatively high doses of infectivity, and there are no data from infectivity studies on human oral tissues, these findings suggest an increased possibility that vCJD may be relatively efficiently transmitted via a range of dental procedures. Ongoing infectivity studies using human oral tissues and the other studies suggested here will enable more precise assessment of the risks of vCJD transmission through dental procedures.

15. Guidance was issued to dentists earlier this year recommending that endodontic files and reamers be treated as single use which, provided it is adhered to, will remove any risk of a self-sustaining epidemic arising from re-use of these instruments. To minimise risk it is critical that appropriate management and audit is in place, both for NHS and private dentistry.

16. It is also critical that a detailed and comprehensive assessment of the risks of all dental procedures be conducted as a matter of urgency. While taking into account the continuing scientific uncertainties, this will allow a more thorough consideration of the possible public health implications of vCJD transmission via dentistry and the identification of possible additional precautionary risk reduction measures. The assessment will require continued updating as more evidence becomes available on the transmissibility of vCJD by dental routes, and on the prevalence of infection within the population. A DH proposal to convene an expert group that includes dental professionals to expedite such an assessment is welcomed. Given the potential for transmission via dentistry, consideration should be given to the urgent assessment of new decontamination technologies which, if proved robust and effective, could significantly reduce transmission risks.

SEAC

Position Statement


vCJD and Dentistry

Issue

1. The Department of Health (DH) asked SEAC to advise on the findings of preliminary research aimed at informing estimates of the risk of variant Creutzfeldt-Jakob Disease (vCJD) transmission via dentistry.

Background

2. Prions are more resistant than other types of infectious agent to the conventional cleaning and sterilisation practices used to decontaminate dental instruments1. Appreciable quantities of residual material may remain adherent to the surface after normal cleaning and sterilisation2. Therefore, if dental tissues are both infectious and susceptible to infection, then dental instruments are a potential mechanism for the secondary transmission of vCJD. Dentistry could be a particularly significant route of transmission for the population as a whole, due to the large number of routine procedures undertaken and also because dental patients have a normal life expectancy. This is in contrast with other transmission routes, such as blood transfusion and neurosurgery, where procedures are often carried out in response to some life-threatening condition. Additionally, the ubiquity of dental procedures and the lack of central records on dental procedures means that should such transmission occur, then it would be difficult to detect and control.

3. No cases of vCJD transmission arising from dental procedures have been reported to date 3 . Previous DH risk assessments4,5 have focused on two possible mechanisms for the transfer of vCJD infectivity via dental instruments; accidental abrasion of the lingual tonsil and endodontic procedures that involve contact with dental pulp. In considering these assessments, SEAC agreed that the risk of transmission via accidental abrasion of the lingual tonsil appears very low. However, the risk of transmission via endodontic procedures may be higher and give rise to a self sustaining vCJD epidemic under circumstances where (i) dental pulp is infective, (ii) transmission via endodontic instruments is efficient and (iii) a large proportion of vCJD infections remain in a subclinical carrier state (SEAC 91, February 2006). In light of this, SEAC advised that restricting endodontic files and reamers to single use be considered 6. SEAC recommended reassessment of these issues as new data emerge.

New research

4. Preliminary, unpublished results of research from the Health Protection Agency, aimed at addressing some of the uncertainties in the risk assessments, were reviewed by SEAC (SEAC 97, May 2007). The prion agent used in these studies is closely related to the vCJD agent. This research, using a mouse model, shows that following inoculation of mouse-adapted bovine spongiform encephalopathy (BSE) directly into the gut, infectivity subsequently becomes widespread in tissues of the oral cavity, including dental pulp, salivary glands and gingiva, during the preclinical as well as clinical stage of disease.
5. It is not known how closely the level and distribution of infectivity in the oral cavity of infected mice reflects those of humans infected with vCJD, as there are no comparable data from oral tissues, in particular dental pulp and gingiva, from human subclinical or clinical vCJD cases7. Although no abnormal prion protein was found in a study of human dental tissues, including dental pulp, salivary glands and gingiva from vCJD cases , the relationship between levels of infectivity and abnormal prion protein is unclear8. Infectivity studies underway using the mouse model and oral tissues that are presently available from human vCJD cases will provide some comparable data. On the basis of what is currently known, there is no reason to suppose that the mouse is not a good model for humans in respect to the distribution of infectivity in oral tissues. Furthermore, the new data are consistent with published results from experiments using a hamster scrapie model9 .

6. A second set of experiments using the same mouse model showed that non-invasive and transient contact between gingival tissue and fine dental files contaminated with mouse-adapted BSE brain homogenate transmits infection very efficiently. It is not known how efficient gingival transmission would be if dental files were contaminated with infectious oral tissues and then subsequently cleaned and sterilised, a situation which would more closely model human dental practice. Further studies using the mouse model that would be more representative of the human situation, comparing oral tissues with a range of doses of infectivity, cleaned and sterilised files and the kind of tissue contact with instruments that occurs during dentistry, should be considered.

7. SEAC considered that the experiments appear well designed and the conclusions justified and reliable, while recognising that the research is incomplete and confirmatory experiments have yet to be completed. It is recommended that the research be completed, submitted for peer-review and widely disseminated as soon as possible so others can consider the implications. Nevertheless, these preliminary data increase the possibility that some oral tissues of humans infected with vCJD may potentially become infective during the preclinical stage of the disease. In addition, they increase the possibility that infection could potentially be transmitted not only via accidental abrasion of the lingual tonsil or endodontic procedures but a variety of routine dental procedures. Implications for transmission risks

8. The new findings help refine assumptions made about the level of infectivity of dental pulp and the stage of incubation period when it becomes infective in the risk assessment of vCJD transmission from the reuse of endodontic files and reamers10. For example, if one patient in 10 000 were to be carrying infection (equivalent to about 6 000 people across the UK – the best current estimate11), the data suggest that in the worst case scenario envisaged in the risk assessment, re-use of endodontic files and reamers might lead to up to 150 new infections per annum. It is not known how many of those infected would go on to develop clinical vCJD. In addition, transmission via the re-use of endodontic files and reamers could be sufficiently efficient to cause a self-sustaining vCJD epidemic arising via this route.

9. These results increase the importance of obtaining reliable estimates of vCJD infection prevalence. Data that will soon be available from the National Anonymous Tonsil Archive may help refine this assessment and provide evidence of the existence and extent of subclinical vCJD infection in tonsillectomy patients. Further data, such as from post mortem tissue or blood donations, will be required to assess prevalence in the general UK population12.

10. Recent guidance issued by DH to dentists to ensure that endodontic files and reamers are treated as single use13 is welcomed and should, as long as it is effectively and quickly implemented, prevent transmission and a self-sustaining epidemic arising via this route. However, the extent and monitoring of compliance with this guidance in private and National Health Service dental practice is unclear.

11. The new research also suggests that dental procedures involving contact with other oral tissues, including gingiva, may also be capable of transmitting vCJD. In the absence of a detailed risk assessment examining the potential for transmission via all dental procedures, it is not possible to come to firm conclusions about the implications of these findings for transmission of vCJD. However, given the potential for transmission by this route serious consideration should be given to assessing the options for reducing transmission risks such as improving decontamination procedures and practice or the implementation of single use instruments.

12. The size of the potential risk from interactions between the dental and other routes of secondary transmission, such as blood transfusion and hospital surgery, to increase the likelihood of a self-sustaining epidemic is unclear.

13. It is likely to be difficult to distinguish clinical vCJD cases arising from dietary exposure to BSE from secondary transmissions via dental procedures, should they arise, as a large proportion of the population is likely both to have consumed contaminated meat and undergone dentistry. However, an analysis of dental procedures by patient age may provide an indication of the age group in which infections, if they occur, would be most likely to be observed. Should the incidence of clinical vCJD cases in this age group increase significantly, this may provide an indication that secondary transmission via dentistry is occurring. Investigation of the dental work for these cases may provide supporting data. There is no clear evidence, to date, based on surveillance or investigations of clinical vCJD cases, that any vCJD cases have been caused by dental procedures but this possibility cannot be excluded.

Conclusions

14. Preliminary research findings suggest that the potential risk of transmission of vCJD via dental procedures may be greater than previously anticipated. Although this research is incomplete, uses an animal model exposed to relatively high doses of infectivity, and there are no data from infectivity studies on human oral tissues, these findings suggest an increased possibility that vCJD may be relatively efficiently transmitted via a range of dental procedures. Ongoing infectivity studies using human oral tissues and the other studies suggested here will enable more precise assessment of the risks of vCJD transmission through dental procedures.

15. Guidance was issued to dentists earlier this year recommending that endodontic files and reamers be treated as single use which, provided it is adhered to, will remove any risk of a self-sustaining epidemic arising from re-use of these instruments. To minimise risk it is critical that appropriate management and audit is in place, both for NHS and private dentistry.

16. It is also critical that a detailed and comprehensive assessment of the risks of all dental procedures be conducted as a matter of urgency. While taking into account the continuing scientific uncertainties, this will allow a more thorough consideration of the possible public health implications of vCJD transmission via dentistry and the identification of possible additional precautionary risk reduction measures. The assessment will require continued updating as more evidence becomes available on the transmissibility of vCJD by dental routes, and on the prevalence of infection within the population. A DH proposal to convene an expert group that includes dental professionals to expedite such an assessment is welcomed. Given the potential for transmission via dentistry, consideration should be given to the urgent assessment of new decontamination technologies which, if proved robust and effective, could significantly reduce transmission risks.
SEAC
June 2007

References

1Smith et al. (2003) Prions and the oral cavity. J. Dent. Res. 82, 769-775.

2Smith et al. (2005) Residual protein levels on reprocessed dental instruments. J. Hosp. Infect. 61, 237-241.

3Everington et al. (2007) Dental treatment and risk of variant CJD – a case control study. Brit. Den. J. 202, 1-3.

4Department of Health. (2003) Risk assessment for vCJD and dentistry.

5 Department of Health (2006) Dentistry and vCJD: the implications of a carrier-state for a self-sustaining epidemic. Unpublished.

6SEAC (2006) Position statement on vCJD and endodontic dentistry. http://www.seac.gov.uk/statements/statement0506.htm

7Head et al. (2003) Investigation of PrPres in dental tissues in variant CJD. Br. Dent. J. 195, 339-343.

8SEAC 90 reserved business minutes.

9Ingrosso et al. (1999) Transmission of the 263K scrapie strain by the dental route. J. Gen. Virol. 80, 3043-3047.

10Department of Health (2006) Dentistry and vCJD: the implications of a carrier-state for a self-sustaining epidemic. Unpublished.

11Clarke & Ghani (2005) Projections of future course of the primary vCJD epidemic in the UK: inclusion of subclinical infection and the possibility of wider genetic susceptibility R. J. Soc. Interface. 2, 19-31.

12SEAC Epidemiology Subgroup (2006) position statement of the vCJD epidemic. http://www.seac.gov.uk/statements/state260106subgroup.htm

13DH (2007) Precautionary advice given to dentists on re-use of instruments http://www.gnn.gov.uk/environment/fullDetail.asp?ReleaseID=279256&NewsAreaID=2&NavigatedFromDepartment=False




SEAC June 2007

27 SEAC Epidemiology Subgroup (2006) position statement of the vCJD epidemic. 



28 DH (2007) Precautionary advice given to dentists on re-use of instruments 



SEAC 99 DECEMBER 14, 2007

Conclusions

14. Preliminary research findings suggest that the potential risk of transmission of vCJD via dental procedures may be greater than previously anticipated. Although this research is incomplete, uses an animal model exposed to relatively high doses of infectivity, and there are no data from infectivity studies on human oral tissues, these findings suggest an increased possibility that vCJD may be relatively efficiently transmitted via a range of dental procedures. Ongoing infectivity studies using human oral tissues and the other studies suggested here will enable more precise assessment of the risks of vCJD transmission through dental procedures.

15. Guidance was issued to dentists earlier this year recommending that endodontic files and reamers be treated as single use which, provided it is adhered to, will remove any risk of a self-sustaining epidemic arising from re-use of these instruments. To minimise risk it is critical that appropriate management and audit is in place, both for NHS and private dentistry.

16. It is also critical that a detailed and comprehensive assessment of the risks of all dental procedures be conducted as a matter of urgency. While taking into account the continuing scientific uncertainties, this will allow a more thorough consideration of the possible public health implications of vCJD transmission via dentistry and the identification of possible additional precautionary risk reduction measures. The assessment will require continued updating as more evidence becomes available on the transmissibility of vCJD by dental routes, and on the prevalence of infection within the population. A DH proposal to convene an expert group that includes dental professionals to expedite such an assessment is welcomed. Given the potential for transmission via dentistry, consideration should be given to the urgent assessment of new decontamination technologies which, if proved robust and effective, could significantly reduce transmission risks.

SEAC June 2007

27 SEAC Epidemiology Subgroup (2006) position statement of the vCJD epidemic. http://www.seac.gov.uk/statements/state260106subgroup.htm


28 DH (2007) Precautionary advice given to dentists on re-use of instruments http://www.gnn.gov.uk/environment/fullDetail.asp?ReleaseID=279256&NewsAreaID=2&NavigatedFromDepartment=False


see full text 17 pages ;

http://www.seac.gov.uk/papers/99-7.pdf


see full text 17 pages ;



SEAC June 2007

27 SEAC Epidemiology Subgroup (2006) position statement of the vCJD epidemic.http://www.seac.gov.uk/statements/state260106subgroup.htm ;

28 DH (2007) Precautionary advice given to dentists on re-use of instruments http://www.gnn.gov.uk/environment/fullDetail.asp?ReleaseID=279256&NewsAreaID=2&NavigatedFromDepartment=False ;

see full text 17 pages ;



Subject: CJD: update for dental staff

Date: November 12, 2006 at 3:25 pm PST

1: Dent Update. 2006 Oct;33(8):454-6, 458-60.

CJD: update for dental staff.



THURSDAY, DECEMBER 22, 2011 

Risk of Prion Disease Transmission through Bovine-Derived Bone Substitutes: A Systematic Review

 Conclusion: This review indicates that bovine-derived graft biomaterials may carry a risk of prion transmission to patients. 



WEDNESDAY, SEPTEMBER 05, 2018 

Edmonton woman one of the youngest diagnosed with CJD at 35 years old and pregnant



TSE PRION UPDATE September 4, 2018


TUESDAY, AUGUST 28, 2018 

USDA finds BSE infection in Florida cow 08/28/18 6:43 PM


WEDNESDAY, AUGUST 29, 2018 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection USDA 08/29/2018 10:00 AM EDT



WEDNESDAY, AUGUST 29, 2018 

Transmissible Spongiform Encephalopathy TSE Prion Atypical BSE Confirmed Florida Update USA August 28, 2018


WEDNESDAY, AUGUST 29, 2018 

OIE Bovine spongiform encephalopathy, United States of America Information received on 29/08/2018 from Dr John Clifford, Official Delegate, Chief Trade Advisor, APHIS USDA

''The event is resolved. No more reports will be submitted.''

well, so much for those herd mates exposed to this atypical BSE cow, and all those trace in and trace outs.

The OIE, USDA, and the BSE MRR policy is a joke, a sad, very sad joke...


THURSDAY, AUGUST 30, 2018 

Florida Department of Agriculture and Consumer Services announced it is working closely with U.S. Department of Agriculture regarding an atypical case of Bovine Spongiform Encephalopathy BSE


THURSDAY, AUGUST 30, 2018 

TRACKING HERD MATES USDA MAD COW DISEASE, TRACE FORWARD, TRACE BACK RECORDS, WHO CARES, NOT THE OIE



USDA ONLY TESTING 20k HEAD OF CATTLE A YEAR FOR MAD COW DISEASE ...LOL!

WEDNESDAY, AUGUST 29, 2018 

USDA Announces Atypical Bovine Spongiform Encephalopathy Detection USDA 08/29/2018 10:00 AM EDT






WEDNESDAY, AUGUST 29, 2018 

USDA DROPS MAD COW TESTING FROM 40K A YEAR TO JUST 20K A YEAR, IMPOSSIBLE TO FIND BSE, BUT THEY DID, IN FLORIDA!



''Atypical BSE is different, and it generally occurs in older cattle, usually 8 years of age or greater. It seems to arise rarely and spontaneously in all cattle populations.''

FALSE!

''The primary source of infection for classical BSE is feed contaminated with the infectious prion agent, such as meat-and-bone meal containing protein derived from rendered infected cattle.  Regulations from the Food and Drug Administration (FDA) have prohibited the inclusion of mammalian protein in feed for cattle and other ruminants since 1997 and have also prohibited high risk tissue materials in all animal feed since 2009.''

FALSE!

LET'S REVIEW RECENT AND PAST SCIENCE THAT SHOWS THE ABOVE TWO STATEMENTS ARE FAR FROM TRUE;

PRION 2018 CONFERENCE

P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 

Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) 

(1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

In 2006, a case of H-type bovine spongiform encephalopathy (BSE) was reported in a cow with a previously unreported prion protein polymorphism (E211K). 

The E211K polymorphism is heritable and homologous to the E200K mutation in humans that is the most frequent PRNP mutation associated with familial Creutzfeldt-Jakob disease. 

Although the prevalence of the E211K polymorphism is low, cattle carrying the K211 allele develop H-type BSE with a rapid onset after experimental inoculation by the intracranial route. 

The purpose of this study was to investigate whether the agents of H-type BSE or H-type BSE associated with the E211K polymorphism transmit to wild type cattle or cattle with the K211 allele after oronasal exposure. 

Wild type (EE211) or heterozygous (EK211) cattle were oronasally inoculated with either H-type BSE from the 2004 US Htype BSE case (n=3) or from the 2006 US H-type case associated with the E211K polymorphism (n=4) using 10% w/v brain homogenates. 

Cattle were observed daily throughout the course of the experiment for the development of clinical signs. 

At approximately 50 months post-inoculation, one steer (EK211 inoculated with E211K associated H-BSE) developed clinical signs including inattentiveness, loss of body condition, weakness, ataxia, and muscle fasciculations and was euthanized. 

Enzyme immunoassay confirmed that abundant misfolded protein was present in the brainstem, and immunohistochemistry demonstrated PrPSc throughout the brain. 

Western blot analysis of brain tissue from the clinically affected steer was consistent with the E211K H-type BSE inoculum. 

With the experiment currently at 55 months post-inoculation, no other cattle in this study have developed clinical signs suggestive of prion disease. 

This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains. 

=====

O10 Zoonotic potential of atypical BSE prions: a systematic evaluation 

Marín-Moreno A (1), Espinosa JC (1), Douet JY (2), Aguilar-Calvo P (1), Píquer J (1), Lorenzo P (1), Lacroux C (2), Huor A (2), Lugan S (2), Tillier C (2), Andreoletti O (2) and Juan María Torres (1) 

(1) Centro de Investigación en Sanidad Animal, CISA-INIA, Carretera Algete-El Casar s/n, Valdeolmos, 28130 Madrid, Spain.(2) UMR INRA ENVT 1225, Interactions Hôtes Agents Pathogènes, Ecole Nationale Vétérinaire de Toulouse, France. 

Bovine Spongiform Encephalopathy (BSE) is the only zoonotic prion recognized to date. The transmission of BSE to humans caused the emergence of variant Creutzfeldt-Jakob disease (vCJD). In 2004 two new atypical prion agents were identified in cattle: H- and L- BSE prion strains. 

The zoonotic potential of atypical BSE prions was assessed by inoculating three different isolates of cattle H- and L-BSE in transgenic mouse lines that overexpress the human PrP covering the three different genotypes of the aminoacid 129 (TgMet129, TgMet/Val129 and TgVal129). This polymorphism is known to be a key element involved in human resistance/susceptibility to BSE. In addition, TgMet129 and TgVal129 were challenged with one H- and L-BSE isolates adapted to sheep PrP expressing hosts to assess if intermediate passage in sheep could modify the capacity of these prions to cross the human species barrier. 

Our results confirm that L-BSE transmits to TgMet129 even better than epidemic BSE. However, atypical L-BSE agent was unable to infect TgVal129 or TgMet/Val129 mice, even after passage in TgMet129. No transmission was observed with H-BSE in any mice model inoculated, irrespectively of the 129 polymorphism. After passage in sheep PrP expressing host, the properties of both H and LBSE including their capacity to cross the human species barrier were dramatically affected, emerging prion strains features that resemble those of sporadic Creutzfeldt-Jakob disease (sCJD). 

To date, this is the more extensive and complete analysis of the zoonotic potential of atypical BSE prions. These results advise not to ignore the zoonotic potential of these agents.

=====

P77 In vitro approach to estimate the human transmission risk of prions 

Iwamaru Y (1) Imamura M (2) Matsuura Y (1) Kohtaro Miyazawa (1) Takashi Yokoyama (3) 

(1 ) National Institute of Animal Health, Prion Disease Unit, Ibaraki, Japan (2) University of Miyazaki, Division of Microbiology, Miyazaki, Japan (3) National Institute of Animal Health, Department of Planning and General Administration, Ibaraki, Japan. 

Prion diseases are fatal neurodegenerative disorders in humans and animals. The key event in the pathogenesis of these disease is the conversion of host-encoded normal cellular prion protein (PrPC) into its pathogenic isoform (PrPSc) and its accumulation in the central nervous system. One of the characteristics of prion is the species barrier that limits the transmission between different species. Currently, bioassays using transgenic mice (Tg) overexpressing PrP of different species have become valuable tools for assessing cross species transmissibility of prions. 

The recent reports describing the emergence of novel bovine spongiform encephalopathy (BSE) from H-BSE and the transmission of chronic wasting disease to swine have generated concerns of human infections of newly identified prions. Although Tg expressing human PrP have been used to model human susceptibility to animal prions, these experiments are costly and time-consuming. In addition, the results of bioassays are influenced by the lines of transgenic mice used and the lifespan of the challenged animals. These factors are needed to be taken into account when assessing the human risk of prions. 

In attempt to develop the more time- and cost-saving method for assessment of the human transmission risk of prions, we performed experiments using protein misfolding cyclic amplification (PMCA) technique to investigate whether PMCA can be compatible with bioassay. Using brain homogenates of Tg expressing bovine PrP as the PrP substrate, we optimized the versatile PMCA condition that could amplify PrPSc from cattle affected with C-, H- or L-BSE. We measured the 50% PMCA seeding activity dose and the 50% lethal dose in 1 g equivalent of C-, H- or L-BSE cattle brain tissue by using PMCA or bioassay, respectively, and assessed the correlations between these doses. 

===== 

 P98 The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge 


Greenlee JJ (1), Moore SJ (1), and West Greenlee MH (2) (1) United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Virus and Prion Research Unit, Ames, IA, United States (2) Department of Biomedical Sciences, Iowa State University College of Veterinary Medicine, Ames, IA, United States. 

reading up on this study from Prion 2018 Conference, very important findings ;

***> This study demonstrates that the H-type BSE agent is transmissible by the oronasal route. 

***> These results reinforce the need for ongoing surveillance for classical and atypical BSE to minimize the risk of potentially infectious tissues entering the animal or human food chains.


PRION 2018 CONFERENCE ABSTRACT



WEDNESDAY, AUGUST 15, 2018 

The agent of H-type bovine spongiform encephalopathy associated with E211K prion protein polymorphism transmits after oronasal challenge

http://bovineprp.blogspot.com/2018/08/the-agent-of-h-type-bovine-spongiform.html



TSE PRION ZOONOSIS ZOONOTIC UPDATE 


 O.05: Transmission of prions to primates after extended silent incubation periods: Implications for BSE and scrapie risk assessment in human populations 

Emmanuel Comoy, Jacqueline Mikol, Valerie Durand, Sophie Luccantoni, Evelyne Correia, Nathalie Lescoutra, Capucine Dehen, and Jean-Philippe Deslys Atomic Energy Commission; Fontenay-aux-Roses, France 

Prion diseases (PD) are the unique neurodegenerative proteinopathies reputed to be transmissible under field conditions since decades. The transmission of Bovine Spongiform Encephalopathy (BSE) to humans evidenced that an animal PD might be zoonotic under appropriate conditions. Contrarily, in the absence of obvious (epidemiological or experimental) elements supporting a transmission or genetic predispositions, PD, like the other proteinopathies, are reputed to occur spontaneously (atpical animal prion strains, sporadic CJD summing 80% of human prion cases). 

Non-human primate models provided the first evidences supporting the transmissibiity of human prion strains and the zoonotic potential of BSE. Among them, cynomolgus macaques brought major information for BSE risk assessment for human health (Chen, 2014), according to their phylogenetic proximity to humans and extended lifetime. We used this model to assess the zoonotic potential of other animal PD from bovine, ovine and cervid origins even after very long silent incubation periods. 

*** We recently observed the direct transmission of a natural classical scrapie isolate to macaque after a 10-year silent incubation period, 

***with features similar to some reported for human cases of sporadic CJD, albeit requiring fourfold long incubation than BSE. Scrapie, as recently evoked in humanized mice (Cassard, 2014), 

***is the third potentially zoonotic PD (with BSE and L-type BSE), 

***thus questioning the origin of human sporadic cases. 

We will present an updated panorama of our different transmission studies and discuss the implications of such extended incubation periods on risk assessment of animal PD for human health. 

=============== 

***thus questioning the origin of human sporadic cases*** 

=============== 

***our findings suggest that possible transmission risk of H-type BSE to sheep and human. Bioassay will be required to determine whether the PMCA products are infectious to these animals. 

============== 
https://prion2015.files.wordpress.com/2015/05/prion2015abstracts.pdf 

***Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

***Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

***These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20 

PRION 2016 TOKYO

Saturday, April 23, 2016

SCRAPIE WS-01: Prion diseases in animals and zoonotic potential 2016

Prion. 10:S15-S21. 2016 ISSN: 1933-6896 printl 1933-690X online

Taylor & Francis

Prion 2016 Animal Prion Disease Workshop Abstracts

WS-01: Prion diseases in animals and zoonotic potential

Juan Maria Torres a, Olivier Andreoletti b, J uan-Carlos Espinosa a. Vincent Beringue c. Patricia Aguilar a,

Natalia Fernandez-Borges a. and Alba Marin-Moreno a

"Centro de Investigacion en Sanidad Animal ( CISA-INIA ). Valdeolmos, Madrid. Spain; b UMR INRA -ENVT 1225 Interactions Holes Agents Pathogenes. ENVT. Toulouse. France: "UR892. Virologie lmmunologie MolécuIaires, Jouy-en-Josas. France

Dietary exposure to bovine spongiform encephalopathy (BSE) contaminated bovine tissues is considered as the origin of variant Creutzfeldt Jakob (vCJD) disease in human. To date, BSE agent is the only recognized zoonotic prion... Despite the variety of Transmissible Spongiform Encephalopathy (TSE) agents that have been circulating for centuries in farmed ruminants there is no apparent epidemiological link between exposure to ruminant products and the occurrence of other form of TSE in human like sporadic Creutzfeldt Jakob Disease (sCJD). However, the zoonotic potential of the diversity of circulating TSE agents has never been systematically assessed. The major issue in experimental assessment of TSEs zoonotic potential lies in the modeling of the ‘species barrier‘, the biological phenomenon that limits TSE agents’ propagation from a species to another. In the last decade, mice genetically engineered to express normal forms of the human prion protein has proved essential in studying human prions pathogenesis and modeling the capacity of TSEs to cross the human species barrier.

To assess the zoonotic potential of prions circulating in farmed ruminants, we study their transmission ability in transgenic mice expressing human PrPC (HuPrP-Tg). Two lines of mice expressing different forms of the human PrPC (129Met or 129Val) are used to determine the role of the Met129Val dimorphism in susceptibility/resistance to the different agents.

These transmission experiments confirm the ability of BSE prions to propagate in 129M- HuPrP-Tg mice and demonstrate that Met129 homozygotes may be susceptible to BSE in sheep or goat to a greater degree than the BSE agent in cattle and that these agents can convey molecular properties and neuropathological indistinguishable from vCJD. However homozygous 129V mice are resistant to all tested BSE derived prions independently of the originating species suggesting a higher transmission barrier for 129V-PrP variant.

Transmission data also revealed that several scrapie prions propagate in HuPrP-Tg mice with efficiency comparable to that of cattle BSE. While the efficiency of transmission at primary passage was low, subsequent passages resulted in a highly virulent prion disease in both Met129 and Val129 mice. 

Transmission of the different scrapie isolates in these mice leads to the emergence of prion strain phenotypes that showed similar characteristics to those displayed by MM1 or VV2 sCJD prion. 

These results demonstrate that scrapie prions have a zoonotic potential and raise new questions about the possible link between animal and human prions. 
http://www.tandfonline.com/doi/abs/10.1080/19336896.2016.1163048?journalCode=kprn20

why do we not want to do TSE transmission studies on chimpanzees $

5. A positive result from a chimpanzee challenged severly would likely create alarm in some circles even if the result could not be interpreted for man. I have a view that all these agents could be transmitted provided a large enough dose by appropriate routes was given and the animals kept long enough. Until the mechanisms of the species barrier are more clearly understood it might be best to retain that hypothesis.

snip...

R. BRADLEY
https://web.archive.org/web/20170126051158/http://collections.europarchive.org/tna/20080102222950/http://www.bseinquiry.gov.uk/files/yb/1990/09/23001001.pdf

Title: Transmission of scrapie prions to primate after an extended silent incubation period) 

*** In complement to the recent demonstration that humanized mice are susceptible to scrapie, we report here the first observation of direct transmission of a natural classical scrapie isolate to a macaque after a 10-year incubation period. Neuropathologic examination revealed all of the features of a prion disease: spongiform change, neuronal loss, and accumulation of PrPres throughout the CNS. 

*** This observation strengthens the questioning of the harmlessness of scrapie to humans, at a time when protective measures for human and animal health are being dismantled and reduced as c-BSE is considered controlled and being eradicated. 

*** Our results underscore the importance of precautionary and protective measures and the necessity for long-term experimental transmission studies to assess the zoonotic potential of other animal prion strains. 
http://www.ars.usda.gov/research/publications/publications.htm?SEQ_NO_115=313160

***> Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility. <***

Transmission of scrapie prions to primate after an extended silent incubation period 

Emmanuel E. Comoy, Jacqueline Mikol, Sophie Luccantoni-Freire, Evelyne Correia, Nathalie Lescoutra-Etchegaray, Valérie Durand, Capucine Dehen, Olivier Andreoletti, Cristina Casalone, Juergen A. Richt, Justin J. Greenlee, Thierry Baron, Sylvie L. Benestad, Paul Brown & Jean-Philippe Deslys Scientific Reports volume 5, Article number: 11573 (2015) | Download Citation

Abstract 

Classical bovine spongiform encephalopathy (c-BSE) is the only animal prion disease reputed to be zoonotic, causing variant Creutzfeldt-Jakob disease (vCJD) in humans and having guided protective measures for animal and human health against animal prion diseases. Recently, partial transmissions to humanized mice showed that the zoonotic potential of scrapie might be similar to c-BSE. We here report the direct transmission of a natural classical scrapie isolate to cynomolgus macaque, a highly relevant model for human prion diseases, after a 10-year silent incubation period, with features similar to those reported for human cases of sporadic CJD. Scrapie is thus actually transmissible to primates with incubation periods compatible with their life expectancy, although fourfold longer than BSE. Long-term experimental transmission studies are necessary to better assess the zoonotic potential of other prion diseases with high prevalence, notably Chronic Wasting Disease of deer and elk and atypical/Nor98 scrapie.

SNIP...

Discussion We describe the transmission of spongiform encephalopathy in a non-human primate inoculated 10 years earlier with a strain of sheep c-scrapie. Because of this extended incubation period in a facility in which other prion diseases are under study, we are obliged to consider two alternative possibilities that might explain its occurrence. We first considered the possibility of a sporadic origin (like CJD in humans). Such an event is extremely improbable because the inoculated animal was 14 years old when the clinical signs appeared, i.e. about 40% through the expected natural lifetime of this species, compared to a peak age incidence of 60–65 years in human sporadic CJD, or about 80% through their expected lifetimes. Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.

The second possibility is a laboratory cross-contamination. Three facts make this possibility equally unlikely. First, handling of specimens in our laboratory is performed with fastidious attention to the avoidance of any such cross-contamination. Second, no laboratory cross-contamination has ever been documented in other primate laboratories, including the NIH, even between infected and uninfected animals housed in the same or adjacent cages with daily intimate contact (P. Brown, personal communication). Third, the cerebral lesion profile is different from all the other prion diseases we have studied in this model19, with a correlation between cerebellar lesions (massive spongiform change of Purkinje cells, intense PrPres staining and reactive gliosis26) and ataxia. The iron deposits present in the globus pallidus are a non specific finding that have been reported previously in neurodegenerative diseases and aging27. Conversely, the thalamic lesion was reminiscent of a metabolic disease due to thiamine deficiency28 but blood thiamine levels were within normal limits (data not shown). The preferential distribution of spongiform change in cortex associated with a limited distribution in the brainstem is reminiscent of the lesion profile in MM2c and VV1 sCJD patients29, but interspecies comparison of lesion profiles should be interpreted with caution. It is of note that the same classical scrapie isolate induced TSE in C57Bl/6 mice with similar incubation periods and lesional profiles as a sample derived from a MM1 sCJD patient30.

We are therefore confident that the illness in this cynomolgus macaque represents a true transmission of a sheep c-scrapie isolate directly to an old-world monkey, which taxonomically resides in the primate subdivision (parvorder of catarrhini) that includes humans. With an homology of its PrP protein with humans of 96.4%31, cynomolgus macaque constitutes a highly relevant model for assessing zoonotic risk of prion diseases. Since our initial aim was to show the absence of transmission of scrapie to macaques in the worst-case scenario, we obtained materials from a flock of naturally-infected sheep, affecting animals with different genotypes32. This c-scrapie isolate exhibited complete transmission in ARQ/ARQ sheep (332 ± 56 days) and Tg338 transgenic mice expressing ovine VRQ/VRQ prion protein (220 ± 5 days) (O. Andreoletti, personal communication). From the standpoint of zoonotic risk, it is important to note that sheep with c-scrapie (including the isolate used in our study) have demonstrable infectivity throughout their lymphoreticular system early in the incubation period of the disease (3 months-old for all the lymphoid organs, and as early as 2 months-old in gut-associated lymph nodes)33. In addition, scrapie infectivity has been identified in blood34, milk35 and skeletal muscle36 from asymptomatic but scrapie infected small ruminants which implies a potential dietary exposure for consumers.

Two earlier studies have reported the occurrence of clinical TSE in cynomolgus macaques after exposures to scrapie isolates. In the first study, the “Compton” scrapie isolate (derived from an English sheep) and serially propagated for 9 passages in goats did not transmit TSE in cynomolgus macaque, rhesus macaque or chimpanzee within 7 years following intracerebral challenge1; conversely, after 8 supplementary passages in conventional mice, this “Compton” isolate induced TSE in a cynomolgus macaque 5 years after intracerebral challenge, but rhesus macaques and chimpanzee remained asymptomatic 8.5 years post-exposure8. However, multiple successive passages that are classically used to select laboratory-adapted prion strains can significantly modify the initial properties of a scrapie isolate, thus questioning the relevance of zoonotic potential for the initial sheep-derived isolate. The same isolate had also induced disease into squirrel monkeys (new-world monkey)9. A second historical observation reported that a cynomolgus macaque developed TSE 6 years post-inoculation with brain homogenate from a scrapie-infected Suffolk ewe (derived from USA), whereas a rhesus macaque and a chimpanzee exposed to the same inoculum remained healthy 9 years post-exposure1. This inoculum also induced TSE in squirrel monkeys after 4 passages in mice. Other scrapie transmission attempts in macaque failed but had more shorter periods of observation in comparison to the current study. Further, it is possible that there are differences in the zoonotic potential of different scrapie strains.

The most striking observation in our study is the extended incubation period of scrapie in the macaque model, which has several implications. Firstly, our observations constitute experimental evidence in favor of the zoonotic potential of c-scrapie, at least for this isolate that has been extensively studied32,33,34,35,36. The cross-species zoonotic ability of this isolate should be confirmed by performing duplicate intracerebral exposures and assessing the transmissibility by the oral route (a successful transmission of prion strains through the intracerebral route may not necessarily indicate the potential for oral transmission37). However, such confirmatory experiments may require more than one decade, which is hardly compatible with current general management and support of scientific projects; thus this study should be rather considered as a case report.

Secondly, transmission of c-BSE to primates occurred within 8 years post exposure for the lowest doses able to transmit the disease (the survival period after inoculation is inversely proportional to the initial amount of infectious inoculum). The occurrence of scrapie 10 years after exposure to a high dose (25 mg) of scrapie-infected sheep brain suggests that the macaque has a higher species barrier for sheep c-scrapie than c-BSE, although it is notable that previous studies based on in vitro conversion of PrP suggested that BSE and scrapie prions would have a similar conversion potential for human PrP38.

Thirdly, prion diseases typically have longer incubation periods after oral exposure than after intracerebral inoculations: since humans can develop Kuru 47 years after oral exposure39, an incubation time of several decades after oral exposure to scrapie would therefore be expected, leading the disease to occur in older adults, i.e. the peak age for cases considered to be sporadic disease, and making a distinction between scrapie-associated and truly sporadic disease extremely difficult to appreciate.

Fourthly, epidemiologic evidence is necessary to confirm the zoonotic potential of an animal disease suggested by experimental studies. A relatively short incubation period and a peculiar epidemiological situation (e.g., all the first vCJD cases occurring in the country with the most important ongoing c-BSE epizootic) led to a high degree of suspicion that c-BSE was the cause of vCJD. Sporadic CJD are considered spontaneous diseases with an almost stable and constant worldwide prevalence (0.5–2 cases per million inhabitants per year), and previous epidemiological studies were unable to draw a link between sCJD and classical scrapie6,7,40,41, even though external causes were hypothesized to explain the occurrence of some sCJD clusters42,43,44. However, extended incubation periods exceeding several decades would impair the predictive values of epidemiological surveillance for prion diseases, already weakened by a limited prevalence of prion diseases and the multiplicity of isolates gathered under the phenotypes of “scrapie” and “sporadic CJD”.

Fifthly, considering this 10 year-long incubation period, together with both laboratory and epidemiological evidence of decade or longer intervals between infection and clinical onset of disease, no premature conclusions should be drawn from negative transmission studies in cynomolgus macaques with less than a decade of observation, as in the aforementioned historical transmission studies of scrapie to primates1,8,9. Our observations and those of others45,46 to date are unable to provide definitive evidence regarding the zoonotic potential of CWD, atypical/Nor98 scrapie or H-type BSE. The extended incubation period of the scrapie-affected macaque in the current study also underscores the limitations of rodent models expressing human PrP for assessing the zoonotic potential of some prion diseases since their lifespan remains limited to approximately two years21,47,48. This point is illustrated by the fact that the recently reported transmission of scrapie to humanized mice was not associated with clinical signs for up to 750 days and occurred in an extreme minority of mice with only a marginal increase in attack rate upon second passage13. The low attack rate in these studies is certainly linked to the limited lifespan of mice compared to the very long periods of observation necessary to demonstrate the development of scrapie. Alternatively, one could estimate that a successful second passage is the result of strain adaptation to the species barrier, thus poorly relevant of the real zoonotic potential of the original scrapie isolate of sheep origin49. The development of scrapie in this primate after an incubation period compatible with its lifespan complements the study conducted in transgenic (humanized) mice; taken together these studies suggest that some isolates of sheep scrapie can promote misfolding of the human prion protein and that scrapie can develop within the lifespan of some primate species.

In addition to previous studies on scrapie transmission to primate1,8,9 and the recently published study on transgenic humanized mice13, our results constitute new evidence for recommending that the potential risk of scrapie for human health should not be dismissed. Indeed, human PrP transgenic mice and primates are the most relevant models for investigating the human transmission barrier. To what extent such models are informative for measuring the zoonotic potential of an animal TSE under field exposure conditions is unknown. During the past decades, many protective measures have been successfully implemented to protect cattle from the spread of c-BSE, and some of these measures have been extended to sheep and goats to protect from scrapie according to the principle of precaution. Since cases of c-BSE have greatly reduced in number, those protective measures are currently being challenged and relaxed in the absence of other known zoonotic animal prion disease. We recommend that risk managers should be aware of the long term potential risk to human health of at least certain scrapie isolates, notably for lymphotropic strains like the classical scrapie strain used in the current study. Relatively high amounts of infectivity in peripheral lymphoid organs in animals infected with these strains could lead to contamination of food products produced for human consumption. Efforts should also be maintained to further assess the zoonotic potential of other animal prion strains in long-term studies, notably lymphotropic strains with high prevalence like CWD, which is spreading across North America, and atypical/Nor98 scrapie (Nor98)50 that was first detected in the past two decades and now represents approximately half of all reported cases of prion diseases in small ruminants worldwide, including territories previously considered as scrapie free.... Even if the prevailing view is that sporadic CJD is due to the spontaneous formation of CJD prions, it remains possible that its apparent sporadic nature may, at least in part, result from our limited capacity to identify an environmental origin.


Singeltary on Scrapie and human transmission way back, see;


ZOONOTIC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE

 here is the latest;

PRION 2018 CONFERENCE
 
Oral transmission of CWD into Cynomolgus macaques: signs of atypical disease, prion conversion and infectivity in macaques and bio-assayed transgenic mice 
 
Hermann M. Schatzl, Samia Hannaoui, Yo-Ching Cheng, Sabine Gilch (Calgary Prion Research Unit, University of Calgary, Calgary, Canada) Michael Beekes (RKI Berlin), Walter Schulz-Schaeffer (University of Homburg/Saar, Germany), Christiane Stahl-Hennig (German Primate Center) & Stefanie Czub (CFIA Lethbridge). 
 
To date, BSE is the only example of interspecies transmission of an animal prion disease into humans. The potential zoonotic transmission of CWD is an alarming issue and was addressed by many groups using a variety of in vitro and in vivo experimental systems. Evidence from these studies indicated a substantial, if not absolute, species barrier, aligning with the absence of epidemiological evidence suggesting transmission into humans. Studies in non-human primates were not conclusive so far, with oral transmission into new-world monkeys and no transmission into old-world monkeys. 
 
Our consortium has challenged 18 Cynomolgus macaques with characterized CWD material, focusing on oral transmission with muscle tissue. Some macaques have orally received a total of 5 kg of muscle material over a period of 2 years. After 5-7 years of incubation time some animals showed clinical symptoms indicative of prion disease, and prion neuropathology and PrPSc deposition were detected in spinal cord and brain of some euthanized animals. PrPSc in immunoblot was weakly detected in some spinal cord materials and various tissues tested positive in RT-QuIC, including lymph node and spleen homogenates. To prove prion infectivity in the macaque tissues, we have intracerebrally inoculated 2 lines of transgenic mice, expressing either elk or human PrP. At least 3 TgElk mice, receiving tissues from 2 different macaques, showed clinical signs of a progressive prion disease and brains were positive in immunoblot and RT-QuIC. Tissues (brain, spinal cord and spleen) from these and pre-clinical mice are currently tested using various read-outs and by second passage in mice. Transgenic mice expressing human PrP were so far negative for clear clinical prion disease (some mice >300 days p.i.). In parallel, the same macaque materials are inoculated into bank voles. 
 
Taken together, there is strong evidence of transmissibility of CWD orally into macaques and from macaque tissues into transgenic mouse models, although with an incomplete attack rate. The clinical and pathological presentation in macaques was mostly atypical, with a strong emphasis on spinal cord pathology. Our ongoing studies will show whether the transmission of CWD into macaques and passage in transgenic mice represents a form of non-adaptive prion amplification, and whether macaque-adapted prions have the potential to infect mice expressing human PrP. The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD.
 
***> The notion that CWD can be transmitted orally into both new-world and old-world non-human primates asks for a careful reevaluation of the zoonotic risk of CWD. <***
 

READING OVER THE PRION 2018 ABSTRACT BOOK, LOOKS LIKE THEY FOUND THAT from this study ;
 
P190 Human prion disease mortality rates by occurrence of chronic wasting disease in freeranging cervids, United States 
 
Abrams JY (1), Maddox RA (1), Schonberger LB (1), Person MK (1), Appleby BS (2), Belay ED (1) (1) Centers for Disease Control and Prevention (CDC), National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, GA, USA (2) Case Western Reserve University, National Prion Disease Pathology Surveillance Center (NPDPSC), Cleveland, OH, USA. 
 
SEEMS THAT THEY FOUND Highly endemic states had a higher rate of prion disease mortality compared to non-CWD states.
 
AND ANOTHER STUDY;
 
P172 Peripheral Neuropathy in Patients with Prion Disease 
 
Wang H(1), Cohen M(1), Appleby BS(1,2) (1) University Hospitals Cleveland Medical Center, Cleveland, Ohio (2) National Prion Disease Pathology Surveillance Center, Cleveland, Ohio..
 
IN THIS STUDY, THERE WERE autopsy-proven prion cases from the National Prion Disease Pathology Surveillance Center that were diagnosed between September 2016 to March 2017, AND included 104 patients.
 
SEEMS THEY FOUND THAT The most common sCJD subtype was MV1-2 (30%), followed by MM1-2 (20%), AND THAT The Majority of cases were male (60%), AND half of them had exposure to wild game.
 
snip...see more on Prion 2017 Macaque study from Prion 2017 Conference and other updated science on cwd tse prion zoonosis below...terry
 
 

Prion 2017 
 
Conference Abstracts CWD 2017 PRION CONFERENCE 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
Stefanie Czub1, Walter Schulz-Schaeffer2, Christiane Stahl-Hennig3, Michael Beekes4, Hermann Schaetzl5 and Dirk Motzkus6 1 
 
University of Calgary Faculty of Veterinary Medicine/Canadian Food Inspection Agency; 2Universitatsklinikum des Saarlandes und Medizinische Fakultat der Universitat des Saarlandes; 3 Deutsches Primaten Zentrum/Goettingen; 4 Robert-Koch-Institut Berlin; 5 University of Calgary Faculty of Veterinary Medicine; 6 presently: Boehringer Ingelheim Veterinary Research Center; previously: Deutsches Primaten Zentrum/Goettingen 
 
This is a progress report of a project which started in 2009. 21 cynomolgus macaques were challenged with characterized CWD material from white-tailed deer (WTD) or elk by intracerebral (ic), oral, and skin exposure routes. Additional blood transfusion experiments are supposed to assess the CWD contamination risk of human blood product. Challenge materials originated from symptomatic cervids for ic, skin scarification and partially per oral routes (WTD brain). Challenge material for feeding of muscle derived from preclinical WTD and from preclinical macaques for blood transfusion experiments. We have confirmed that the CWD challenge material contained at least two different CWD agents (brain material) as well as CWD prions in muscle-associated nerves. Here we present first data on a group of animals either challenged ic with steel wires or per orally and sacrificed with incubation times ranging from 4.5 to 6.9 years at postmortem. Three animals displayed signs of mild clinical disease, including anxiety, apathy, ataxia and/or tremor. In four animals wasting was observed, two of those had confirmed diabetes. All animals have variable signs of prion neuropathology in spinal cords and brains and by supersensitive IHC, reaction was detected in spinal cord segments of all animals. Protein misfolding cyclic amplification (PMCA), real-time quaking-induced conversion (RT-QuiC) and PET-blot assays to further substantiate these findings are on the way, as well as bioassays in bank voles and transgenic mice. At present, a total of 10 animals are sacrificed and read-outs are ongoing. Preclinical incubation of the remaining macaques covers a range from 6.4 to 7.10 years. Based on the species barrier and an incubation time of > 5 years for BSE in macaques and about 10 years for scrapie in macaques, we expected an onset of clinical disease beyond 6 years post inoculation. 
 
PRION 2017 
 
DECIPHERING NEURODEGENERATIVE DISORDERS 
 
Subject: PRION 2017 CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS VIDEO 
 
PRION 2017 
 
CONFERENCE DECIPHERING NEURODEGENERATIVE DISORDERS 
 
*** PRION 2017 CONFERENCE VIDEO 
 
 

 
TUESDAY, JUNE 13, 2017 
 
PRION 2017 CONFERENCE ABSTRACT 
 
First evidence of intracranial and peroral transmission of Chronic Wasting Disease (CWD) into Cynomolgus macaques: a work in progress 
 
 
SATURDAY, JULY 29, 2017 
 
Risk Advisory Opinion: Potential Human Health Risks from Chronic Wasting Disease CFIA, PHAC, HC (HPFB and FNIHB), INAC, Parks Canada, ECCC and AAFC 
 
 
2018 just out CDC...see;

Research
 
Susceptibility of Human Prion Protein to Conversion by Chronic Wasting Disease Prions
 
Marcelo A. BarriaComments to Author , Adriana Libori, Gordon Mitchell, and Mark W. Head Author affiliations: National CJD Research and Surveillance Unit, University of Edinburgh, Edinburgh, Scotland, UK (M.A. Barria, A. Libori, M.W. Head); National and OIE Reference Laboratory for Scrapie and CWD, Canadian Food Inspection Agency, Ottawa, Ontario, Canada (G. Mitchell)
 
M. A. Barria et al.
 
ABSTRACT
 
Chronic wasting disease (CWD) is a contagious and fatal neurodegenerative disease and a serious animal health issue for deer and elk in North America. The identification of the first cases of CWD among free-ranging reindeer and moose in Europe brings back into focus the unresolved issue of whether CWD can be zoonotic like bovine spongiform encephalopathy. We used a cell-free seeded protein misfolding assay to determine whether CWD prions from elk, white-tailed deer, and reindeer in North America can convert the human prion protein to the disease-associated form. We found that prions can convert, but the efficiency of conversion is affected by polymorphic variation in the cervid and human prion protein genes. In view of the similarity of reindeer, elk, and white-tailed deer in North America to reindeer, red deer, and roe deer, respectively, in Europe, a more comprehensive and thorough assessment of the zoonotic potential of CWD might be warranted. 
 

 
Molecular Barriers to Zoonotic Transmission of Prions 
 
Marcelo A. Barria, Aru Balachandran, Masanori Morita, Tetsuyuki Kitamoto, Rona Barron, Jean Manson, Richard Knight, James W. Ironside, and Mark W. Headcorresponding author 
 
snip... 
 
The conversion of human PrPC by CWD brain homogenate in PMCA reactions was less efficient when the amino acid at position 129 was valine rather than methionine. 
 
***Furthermore, the form of human PrPres produced in this in vitro assay when seeded with CWD, resembles that found in the most common human prion disease, namely sCJD of the MM1 subtype. 
 
snip... 
 
However, we can say with confidence that under the conditions used here, none of the animal isolates tested were as efficient as C-type BSE in converting human PrPC, which is reassuring. 
 
***Less reassuring is the finding that there is no absolute barrier to the conversion of human PrPC by CWD prions in a protocol using a single round of PMCA and an entirely human substrate prepared from the target organ of prion diseases, the brain. 
 
 

ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION 

10. ZOONOTIC, ZOONOSIS, CHRONIC WASTING DISEASE CWD TRANSMISSIBLE SPONGIFORM ENCEPHALOPATHY TSE PRION AKA MAD DEER ELK DISEASE IN HUMANS, has it already happened, that should be the question... 

''In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids.'' Scientific opinion on chronic wasting disease (II)

EFSA Panel on Biological Hazards (BIOHAZ) Antonia Ricci Ana Allende Declan Bolton Marianne Chemaly Robert Davies Pablo Salvador Fernández Escámez ... See all authors 

First published: 17 January 2018 
https://doi.org/10.2903/j.efsa.2018.5132 ;

also, see; 

8. Even though human TSE
exposure risk through consumption of game from European cervids can be assumed to be minor, if at all existing, no final conclusion can be drawn due to the overall lack of scientific data. In particular the US data do not clearly exclude the possibility of human (sporadic or familial) TSE development due to consumption of venison. The Working Group thus recognizes a potential risk to consumers if a TSE would be present in European cervids. It might be prudent considering appropriate measures to reduce such a risk, e.g. excluding tissues such as CNS and lymphoid tissues from the human food chain, which would greatly reduce any potential risk for consumers. However, it is stressed that currently, no data regarding a risk of TSE infections from cervid products are available. 

snip... 

The tissue distribution of infectivity in CWD
infected cervids is now known to extend beyond CNS and lymphoid tissues. While the removal of these specific tissues from the food chain would reduce human dietary exposure to infectivity, exclusion from the food chain of the whole carcass of any infected animal would be required to eliminate human dietary exposure. 
https://efsa.onlinelibrary.wiley.com/doi/full/10.2903/j.efsa.2018.5132


zoonosis zoonotic cervid tse prion cwd to humans, preparing for the storm 

***An alternative to modeling the species barrier is the cell-free conversion assay which points to CWD as the animal prion disease with the greatest zoonotic potential, after (and very much less than) BSE.116*** 
https://www.tandfonline.com/doi/pdf/10.4161/pri.29237
 
To date there is no direct evidence that CWD has been or can be transmitted from animals to humans. 

However, initial findings from a laboratory research project funded by the Alberta Prion Research Institute (APRI) and Alberta Livestock Meat Agency (ALMA), and led by a Canadian Food Inspection Agency (CFIA) scientist indicate that CWD has been transmitted to cynomolgus macaques (the non-human primate species most closely related to humans that may be used in research), through both the intracranial and oral routes of exposure. 

Both infected brain and muscle tissues were found to transmit disease. 

Health Canada’s Health Products and Food Branch (HPFB) was asked to consider the impact of these findings on the Branch’s current position on CWD in health products and foods.. 

Summary and Recommendation: 

snip....

Health Portfolio partners were recently made aware of initial findings from a research project led by a CFIA scientist that have demonstrated that cynomolgus macaques can be infected via intracranial exposure and oral gavage with CWD infected muscle. 

These findings suggest that CWD, under specific experimental conditions, has the potential to cross the human species barrier, including by enteral feeding of CWD infected muscle. 
https://www..thetyee.ca/Documents/2017/06/24/Risk-Advisory-Opinion-CWD-2017.pdf


*** WDA 2016 NEW YORK *** 

We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. 

In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. 

Student Presentations Session 2 

The species barriers and public health threat of CWD and BSE prions 

Ms. Kristen Davenport1, Dr. Davin Henderson1, Dr. Candace Mathiason1, Dr. Edward Hoover1 1Colorado State University 

Chronic wasting disease (CWD) is spreading rapidly through cervid populations in the USA. Bovine spongiform encephalopathy (BSE, mad cow disease) arose in the 1980s because cattle were fed recycled animal protein. 

These and other prion diseases are caused by abnormal folding of the normal prion protein (PrP) into a disease causing form (PrPd), which is pathogenic to nervous system cells and can cause subsequent PrP to misfold. CWD spreads among cervids very efficiently, but it has not yet infected humans. On the other hand, BSE was spread only when cattle consumed infected bovine or ovine tissue, but did infect humans and other species. 

The objective of this research is to understand the role of PrP structure in cross-species infection by CWD and BSE. To study the propensity of each species’ PrP to be induced to misfold by the presence of PrPd from verious species, we have used an in vitro system that permits detection of PrPd in real-time. 

We measured the conversion efficiency of various combinations of PrPd seeds and PrP substrate combinations. 

We observed the cross-species behavior of CWD and BSE, in addition to feline-adapted CWD and BSE. We found that CWD adapts to a new host more readily than BSE and that human PrP was unexpectedly prone to misfolding by CWD prions. In addition, we investigated the role of specific regions of the bovine, deer and human PrP protein in resistance to conversion by prions from another species. 

***We have concluded that the human protein has a region that confers unusual susceptibility to conversion by CWD prions. CWD is unique among prion diseases in its rapid spread in natural populations.. BSE prions are essentially unaltered upon passage to a new species, while CWD adapts to the new species. This adaptation has consequences for surveillance of humans exposed to CWD. Wildlife Disease Risk Communication Research Contributes to Wildlife Trust Administration Exploring perceptions about chronic wasting disease risks among wildlife and agriculture professionals and stakeholders
http://www.wda2016.org/uploads/5/8/6/1/58613359/wda_2016_conference_proceedings_low_res.pdf


TUESDAY, SEPTEMBER 12, 2017 

CDC Now Recommends Strongly consider having the deer or elk tested for CWD before you eat the meat 
http://chronic-wasting-disease.blogspot.com/2017/09/cdc-now-recommends-strongly-consider.html


SATURDAY, JANUARY 27, 2018 

CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018
http://chronic-wasting-disease.blogspot.com/2018/01/cdc-chronic-wasting-disease-cwd-tse.html


Subject: CDC CHRONIC WASTING DISEASE CWD TSE PRION UPDATE REPORT USA JANUARY 2018

CHRONIC WASTING DISEASE CWD TSE PRION IS THE USA AND NORTH AMERICA'S MAD COW DISEASE. 

THE USDA INC ET AL WORKED VERY HARD CONCEALING BSE TSE PRION IN CATTLE. they almost succeeded $$$

BUT CWD TSE PRION IN CERVIDS IS A DIFFERENT BEAST, THE COVER UP THERE, USDA INC COULD NOT CONTAIN.

SPORADIC CJD IS 85%+ OF ALL HUMAN TSE PRION DISEASE.

SPORADIC CJD HAS NOW BEEN LINKED TO TYPICAL AND ATYPICAL BSE, SCRAPIE, AND CWD.

SPORADIC/SPONTANEOUS TSE HAS NEVER BEEN PROVEN.

***Moreover, sporadic disease has never been observed in breeding colonies or primate research laboratories, most notably among hundreds of animals over several decades of study at the National Institutes of Health25, and in nearly twenty older animals continuously housed in our own facility.***
https://www.nature.com/articles/srep11573 


CDC CWD TSE PRION UPDATE USA JANUARY 2018

As of January 2018, CWD in free-ranging deer, elk and/or moose has been reported in at least 22 states in the continental United States, as well as two provinces in Canada. In addition, CWD has been reported in reindeer and moose in Norway, and a small number of imported cases have been reported in South Korea. The disease has also been found in farmed deer and elk. CWD was first identified in captive deer in the late 1960s in Colorado and in wild deer in 1981. By the 1990s, it had been reported in surrounding areas in northern Colorado and southern Wyoming. Since 2000, the area known to be affected by CWD in free-ranging animals has increased to at least 22 states, including states in the Midwest, Southwest, and limited areas on the East Coast.. It is possible that CWD may also occur in other states without strong animal surveillance systems, but that cases haven’t been detected yet. Once CWD is established in an area, the risk can remain for a long time in the environment. The affected areas are likely to continue to expand. Nationwide, the overall occurrence of CWD in free-ranging deer and elk is relatively low. However, in several locations where the disease is established, infection rates may exceed 10 percent (1 in 10), and localized infection rates of more than 25 percent (1 in 4) have been reported. The infection rates among some captive deer can be much higher, with a rate of 79% (nearly 4 in 5) reported from at least one captive herd. As of January 2018, there were 186 counties in 22 states with reported CWD in free-ranging cervids... 

Chronic Wasting Disease Among Free-Ranging Cervids by County, United States, January 2018 

snip.... 
https://www.cdc.gov/prions/cwd/occurrence.html


*** 2017-2018 CWD TSE Prion UPDATE
https://www.cdc.gov/prions/cwd/occurrence.html


*** The potential impact of prion diseases on human health was greatly magnified by the recognition that interspecies transfer of BSE to humans by beef ingestion resulted in vCJD. While changes in animal feed constituents and slaughter practices appear to have curtailed vCJD, there is concern that CWD of free-ranging deer and elk in the U.S.. might also cross the species barrier. Thus, consuming venison could be a source of human prion disease. Whether BSE and CWD represent interspecies scrapie transfer or are newly arisen prion diseases is unknown. Therefore, the possibility of transmission of prion disease through other food animals cannot be ruled out. There is evidence that vCJD can be transmitted through blood transfusion. There is likely a pool of unknown size of asymptomatic individuals infected with vCJD, and there may be asymptomatic individuals infected with the CWD equivalent. These circumstances represent a potential threat to blood, blood products, and plasma supplies. 
http://cdmrp.army.mil/prevfunded/nprp/NPRP_Summit_Final_Report.pdf


Transmission Studies

Mule deer transmissions of CWD were by intracerebral inoculation and compared with natural cases {the following was written but with a single line marked through it ''first passage (by this route)}....TSS

resulted in a more rapidly progressive clinical disease with repeated episodes of synocopy ending in coma. One control animal became affected, it is believed through contamination of inoculum (?saline). Further CWD transmissions were carried out by Dick Marsh into ferret, mink and squirrel monkey. Transmission occurred in ALL of these species with the shortest incubation period in the ferret.

snip...
https://web.archive.org/web/20090506002237/http://www..bseinquiry.gov.uk/files/mb/m11b/tab01.pdf
http://www.fsis.usda.gov/OPPDE/Comments/03-025IFA/03-025IFA-2.pdf


Prion Infectivity in Fat of Deer with Chronic Wasting Disease
 

Brent Race#, Kimberly Meade-White#, Richard Race and Bruce Chesebro* + Author Affiliations

In mice, prion infectivity was recently detected in fat. Since ruminant fat is consumed by humans and fed to animals, we determined infectivity titers in fat from two CWD-infected deer. Deer fat devoid of muscle contained low levels of CWD infectivity and might be a risk factor for prion infection of other species.
http://jvi.asm.org/content/83/18/9608.full


Prions in Skeletal Muscles of Deer with Chronic Wasting Disease 

Here bioassays in transgenic mice expressing cervid prion protein revealed the presence of infectious prions in skeletal muscles of CWD-infected deer, demonstrating that humans consuming or handling meat from CWD-infected deer are at risk to prion exposure.
http://science.sciencemag.org/content/311/5764/1117.long

*** now, let’s see what the authors said about this casual link, personal communications years ago, and then the latest on the zoonotic potential from CWD to humans from the TOKYO PRION 2016 CONFERENCE.

see where it is stated NO STRONG evidence. so, does this mean there IS casual evidence ???? “Our conclusion stating that we found no strong evidence of CWD transmission to humans”

From: TSS (216-119-163-189.ipset45.wt.net)

Subject: CWD aka MAD DEER/ELK TO HUMANS ???

Date: September 30, 2002 at 7:06 am PST

From: "Belay, Ermias"

To: Cc: "Race, Richard (NIH)" ; ; "Belay, Ermias"

Sent: Monday, September 30, 2002 9:22 AM

Subject: RE: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Dear Sir/Madam,

In the Archives of Neurology you quoted (the abstract of which was attached to your email), we did not say CWD in humans will present like variant CJD.. That assumption would be wrong. I encourage you to read the whole article and call me if you have questions or need more clarification (phone: 404-639-3091). Also, we do not claim that "no-one has ever been infected with prion disease from eating venison." Our conclusion stating that we found no strong evidence of CWD transmission to humans in the article you quoted or in any other forum is limited to the patients we investigated.

Ermias Belay, M.D. Centers for Disease Control and Prevention

-----Original Message-----

From: Sent: Sunday, September 29, 2002 10:15 AM

To: 
rr26k@nih.govrrace@niaid.nih.govebb8@CDC.GOV

Subject: TO CDC AND NIH - PUB MED- 3 MORE DEATHS - CWD - YOUNG HUNTERS

Sunday, November 10, 2002 6:26 PM .......snip........end..............TSS

Thursday, April 03, 2008

A prion disease of cervids: Chronic wasting disease 2008 1: Vet Res. 2008 Apr 3;39(4):41 A prion disease of cervids: Chronic wasting disease Sigurdson CJ.

snip...

*** twenty-seven CJD patients who regularly consumed venison were reported to the Surveillance Center***,

snip... full text ;
http://chronic-wasting-disease.blogspot.com/2008/04/prion-disease-of-cervids-chronic.html

> However, to date, no CWD infections have been reported in people. 

key word here is 'reported'. science has shown that CWD in humans will look like sporadic CJD. SO, how can one assume that CWD has not already transmitted to humans? they can't, and it's as simple as that. from all recorded science to date, CWD has already transmitted to humans, and it's being misdiagnosed as sporadic CJD. ...terry 

*** LOOKING FOR CWD IN HUMANS AS nvCJD or as an ATYPICAL CJD, LOOKING IN ALL THE WRONG PLACES $$$ ***

*** These results would seem to suggest that CWD does indeed have zoonotic potential, at least as judged by the compatibility of CWD prions and their human PrPC target. Furthermore, extrapolation from this simple in vitro assay suggests that if zoonotic CWD occurred, it would most likely effect those of the PRNP codon 129-MM genotype and that the PrPres type would be similar to that found in the most common subtype of sCJD (MM1).*** 
http://www.tandfonline.com/doi/full/10.4161/pri.28124?src=recsys
http://www.tandfonline.com/doi/pdf/10.4161/pri.28124?needAccess=true
https://wwwnc.cdc.gov/eid/article/20/1/13-0858_article

SEE; Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Monday, May 23, 2011

CDC Assesses Potential Human Exposure to Prion Diseases Travel Warning

Public release date: 23-May-2011

Contact: Francesca Costanzo 
adajmedia@elsevier.com 215-239-3249 Elsevier Health Sciences

CDC assesses potential human exposure to prion diseases Study results reported in the Journal of the American Dietetic Association Philadelphia, PA, May 23, 2011 – Researchers from the Centers for Disease Control and Prevention (CDC) have examined the potential for human exposure to prion diseases, looking at hunting, venison consumption, and travel to areas in which prion diseases have been reported in animals. Three prion diseases in particular – bovine spongiform encephalopathy (BSE or “Mad Cow Disease”), variant Creutzfeldt-Jakob disease (vCJD), and chronic wasting disease (CWD) – were specified in the investigation. The results of this investigation are published in the June issue of the Journal of the American Dietetic Association.

“While prion diseases are rare, they are generally fatal for anyone who becomes infected. More than anything else, the results of this study support the need for continued surveillance of prion diseases,” commented lead investigator Joseph Y. Abrams, MPH, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta.”But it’s also important that people know the facts about these diseases, especially since this study shows that a good number of people have participated in activities that may expose them to infection-causing agents.”

Although rare, human prion diseases such as CJD may be related to BSE. Prion (proteinaceous infectious particles) diseases are a group of rare brain diseases that affect humans and animals. When a person gets a prion disease, brain function is impaired. This causes memory and personality changes, dementia, and problems with movement. All of these worsen over time. These diseases are invariably fatal. Since these diseases may take years to manifest, knowing the extent of human exposure to possible prion diseases could become important in the event of an outbreak..

CDC investigators evaluated the results of the 2006-2007 population survey conducted by the Foodborne Diseases Active Surveillance Network (FoodNet). This survey collects information on food consumption practices, health outcomes, and demographic characteristics of residents of the participating Emerging Infections Program sites. The survey was conducted in Connecticut, Georgia, Maryland, Minnesota, New Mexico, Oregon, and Tennessee, as well as five counties in the San Francisco Bay area, seven counties in the Greater Denver area, and 34 counties in western and northeastern New York.

Survey participants were asked about behaviors that could be associated with exposure to the agents causing BSE and CWD, including travel to the nine countries considered to be BSE-endemic (United Kingdom, Republic of Ireland, France, Portugal, Switzerland, Italy, the Netherlands, Germany, Spain) and the cumulative length of stay in each of those countries. Respondents were asked if they ever had hunted for deer or elk, and if that hunting had taken place in areas considered to be CWD-endemic (northeastern Colorado, southeastern Wyoming or southwestern Nebraska). They were also asked if they had ever consumed venison, the frequency of consumption, and whether the meat came from the wild.

The proportion of survey respondents who reported travel to at least one of the nine BSE endemic countries since 1980 was 29.5%. Travel to the United Kingdom was reported by 19.4% of respondents, higher than to any other BSE-endemic country. Among those who traveled, the median duration of travel to the United Kingdom (14 days) was longer than that of any other BSE-endemic country. Travelers to the UK were more likely to have spent at least 30 days in the country (24.9%) compared to travelers to any other BSE endemic country. The prevalence and extent of travel to the UK indicate that health concerns in the UK may also become issues for US residents.

The proportion of survey respondents reporting having hunted for deer or elk was 18.5% and 1.2% reported having hunted for deer or elk in CWD-endemic areas. Venison consumption was reported by 67.4% of FoodNet respondents, and 88.6% of those reporting venison consumption had obtained all of their meat from the wild. These findings reinforce the importance of CWD surveillance and control programs for wild deer and elk to reduce human exposure to the CWD agent. Hunters in CWD-endemic areas are advised to take simple precautions such as: avoiding consuming meat from sickly deer or elk, avoiding consuming brain or spinal cord tissues, minimizing the handling of brain and spinal cord tissues, and wearing gloves when field-dressing carcasses.

According to Abrams, “The 2006-2007 FoodNet population survey provides useful information should foodborne prion infection become an increasing public health concern in the future. The data presented describe the prevalence of important behaviors and their associations with demographic characteristics. Surveillance of BSE, CWD, and human prion diseases are critical aspects of addressing the burden of these diseases in animal populations and how that may relate to human health.”

###

The article is “Travel history, hunting, and venison consumption related to prion disease exposure, 2006-2007 FoodNet population survey” by Joseph Y. Abrams, MPH; Ryan A. Maddox, MPH; Alexis R Harvey, MPH; Lawrence B. Schonberger, MD; and Ermias D. Belay, MD. It appears in the Journal of the American Dietetic Association, Volume 111, Issue 6 (June 2011) published by Elsevier.

In an accompanying podcast CDC’s Joseph Y. Abrams discusses travel, hunting, and eating venison in relation to prion diseases. It is available at 
http://adajournal.org/content/podcast.
http://www.eurekalert.org/pub_releases/2011-05/ehs-cap051811.php

Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Joseph Y. Abrams, MPH, Ryan A. Maddox, MPH , Alexis R. Harvey, MPH , Lawrence B. Schonberger, MD , Ermias D. Belay, MD

Accepted 15 November 2010. Abstract Full Text PDF References .

Abstract

The transmission of bovine spongiform encephalopathy (BSE) to human beings and the spread of chronic wasting disease (CWD) among cervids have prompted concerns about zoonotic transmission of prion diseases. Travel to the United Kingdom and other European countries, hunting for deer or elk, and venison consumption could result in the exposure of US residents to the agents that cause BSE and CWD. The Foodborne Diseases Active Surveillance Network 2006-2007 population survey was used to assess the prevalence of these behaviors among residents of 10 catchment areas across the United States. Of 17,372 survey respondents, 19.4% reported travel to the United Kingdom since 1980, and 29.5% reported travel to any of the nine European countries considered to be BSE-endemic since 1980. The proportion of respondents who had ever hunted deer or elk was 18.5%, and 1.2% had hunted deer or elk in a CWD–endemic area. More than two thirds (67.4%) reported having ever eaten deer or elk meat. Respondents who traveled spent more time in the United Kingdom (median 14 days) than in any other BSE-endemic country. Of the 11,635 respondents who had consumed venison, 59.8% ate venison at most one to two times during their year of highest consumption, and 88.6% had obtained all of their meat from the wild. The survey results were useful in determining the prevalence and frequency of behaviors that could be important factors for foodborne prion transmission.
http://www.adajournal.org/article/S0002-8223(11)00278-1/abstract

PLUS, THE CDC DID NOT PUT THIS WARNING OUT FOR THE WELL BEING OF THE DEER AND ELK ; 

Thursday, May 26, 2011

Travel History, Hunting, and Venison Consumption Related to Prion Disease Exposure, 2006-2007 FoodNet Population Survey

Journal of the American Dietetic Association Volume 111, Issue 6 , Pages 858-863, June 2011.
http://transmissiblespongiformencephalopathy.blogspot.com/2011/05/travel-history-hunting-and-venison.html

NOR IS THE FDA recalling this CWD positive elk meat for the well being of the dead elk ;

Wednesday, March 18, 2009

Noah's Ark Holding, LLC, Dawson, MN RECALL Elk products contain meat derived from an elk confirmed to have CWD NV, CA, TX, CO, NY, UT, FL, OK RECALLS AND FIELD CORRECTIONS: FOODS CLASS II
http://chronic-wasting-disease.blogspot.com/2009/03/noahs-ark-holding-llc-dawson-mn-recall.html

 Transmissible Spongiform Encephalopathies

BSE INQUIRY

CJD9/10022

October 1994

Mr R.N. Elmhirst Chairman British Deer Farmers Association Holly Lodge Spencers Lane 

BerksWell Coventry CV7 7BZ

Dear Mr Elmhirst,

CREUTZFELDT-JAKOB DISEASE (CJD) SURVEILLANCE UNIT REPORT

Thank you for your recent letter concerning the publication of the third annual report from the CJD Surveillance Unit. I am sorry that you are dissatisfied with the way in which this report was published.

The Surveillance Unit is a completely independant outside body and the Department of Health is committed to publishing their reports as soon as they become available. In the circumstances it is not the practice to circulate the report for comment since the findings of the report would not be amended.. In future we can ensure that the British Deer Farmers Association receives a copy of the report in advance of publication.

The Chief Medical Officer has undertaken to keep the public fully informed of the results of any research in respect of CJD. This report was entirely the work of the unit and was produced completely independantly of the the Department.

The statistical results reqarding the consumption of venison was put into perspective in the body of the report and was not mentioned at all in the press release. Media attention regarding this report was low key but gave a realistic presentation of the statistical findings of the Unit. This approach to publication was successful in that consumption of venison was highlighted only once by the media ie. in the News at one television proqramme.

I believe that a further statement about the report, or indeed statistical links between CJD and consumption of venison, would increase, and quite possibly give damaging credence, to the whole issue. From the low key media reports of which I am aware it seems unlikely that venison consumption will suffer adversely, if at all.
http://web.archive.org/web/20030511010117/http://www.bseinquiry.gov.uk/files/yb/1994/10/00003001.pdf

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

*** The association between venison eating and risk of CJD shows similar pattern, with regular venison eating associated with a 9 FOLD INCREASE IN RISK OF CJD (p = 0.04). ***

There is some evidence that risk of CJD INCREASES WITH INCREASING FREQUENCY OF LAMB EATING (p = 0.02).

The evidence for such an association between beef eating and CJD is weaker (p = 0.14). When only controls for whom a relative was interviewed are included, this evidence becomes a little STRONGER (p = 0.08).

snip...

It was found that when veal was included in the model with another exposure, the association between veal and CJD remained statistically significant (p = < 0.05 for all exposures), while the other exposures ceased to be statistically significant (p = > 0.05).

snip...

In conclusion, an analysis of dietary histories revealed statistical associations between various meats/animal products and INCREASED RISK OF CJD. When some account was taken of possible confounding, the association between VEAL EATING AND RISK OF CJD EMERGED AS THE STRONGEST OF THESE ASSOCIATIONS STATISTICALLY. ...

snip...

In the study in the USA, a range of foodstuffs were associated with an increased risk of CJD, including liver consumption which was associated with an apparent SIX-FOLD INCREASE IN THE RISK OF CJD. By comparing the data from 3 studies in relation to this particular dietary factor, the risk of liver consumption became non-significant with an odds ratio of 1.2 (PERSONAL COMMUNICATION, PROFESSOR A. HOFMAN. ERASMUS UNIVERSITY, ROTTERDAM). (???...TSS)

snip...see full report ;
https://web..archive.org/web/20170126073306/http://collections..europarchive..org/tna/20090505194948/http://bseinquiry.gov.uk/files/yb/1994/08/00004001.pdf

 TUESDAY, JULY 31, 2018 

USA CJD TSE Tables of Cases Examined National Prion Disease Pathology Surveillance Center Cases Examined May 1, 2018

http://prionunitusaupdate.blogspot.com/2018/07/usa-cjd-tse-tables-of-cases-examined.html

HUMAN MAD COW DISEASE nvCJD TEXAS CASE NOT LINKED TO EUROPEAN TRAVEL CDC
Sunday, November 23, 2014

Confirmed Variant Creutzfeldt-Jakob Disease (variant CJD) Case in Texas

Updated: October 7, 2014

CDC and the Texas Department of State Health Services (DSHS) have completed the investigation of the recently reported fourth vCJD case in the United States. It confirmed that the case was in a US citizen born outside the Americas and indicated that the patient's exposure to the BSE/vCJD agent most likely occurred before he moved to the United States; the patient had resided in Kuwait, Russia and Lebanon. The completed investigation did not support the patient's having had extended travel to European countries, including the United Kingdom, or travel to Saudi Arabia. The specific overseas country where this patient’s infection occurred is less clear largely because the investigation did not definitely link him to a country where other known vCJD cases likely had been infected.

https://www.cdc.gov/ncidod/dvrd/vcjd/other/confirmed-case-in-texas.htm

https://vcjd.blogspot.com/2014/11/confirmed-variant-creutzfeldt-jakob.html



Evidence That Transmissible Mink Encephalopathy Results from Feeding Infected Cattle
Over the next 8-10 weeks, approximately 40% of all the adult mink on the farm died from TME.

snip...

The rancher was a ''dead stock'' feeder using mostly (>95%) downer or dead dairy cattle...

In Confidence - Perceptions of unconventional slow virus diseases of animals in the USA - APRIL-MAY 1989 - G A H Wells

3. Prof. A. Robertson gave a brief account of BSE. The US approach was to accord it a very low profile indeed. Dr. A Thiermann showed the picture in the ''Independent'' with cattle being incinerated and thought this was a fanatical incident to be avoided in the US at all costs. ...

”The occurrence of CWD must be viewed against the contest of the locations in which it occurred. It was an incidental and unwelcome complication of the respective wildlife research programmes. Despite it’s subsequent recognition as a new disease of cervids, therefore justifying direct investigation, no specific research funding was forthcoming. The USDA veiwed it as a wildlife problem and consequently not their province!” ...page 26.

*** Spraker suggested an interesting explanation for the occurrence of CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted at this site. When deer were introduced to the pens they occupied ground that had previously been occupied by sheep.



***>2018<***


TUESDAY, AUGUST 7, 2018 

Unexpected prion phenotypes in experimentally transfused animals: predictive models for humans?



TUESDAY, AUGUST 07, 2018 

Passage of scrapie to deer results in a new phenotype upon return passage to sheep




new outbreak of TSE Prion in NEW LIVESTOCK SPECIES

mad camel disease



***> IMPORTS AND EXPORTS <***

***SEE MASSIVE AMOUNTS OF BANNED ANIMAL PROTEIN AKA MAD COW FEED IN COMMERCE USA DECADES AFTER POST BAN ***

http://camelusprp.blogspot.com/2018/04/dromedary-camels-algeria-prion-mad.html

http://madcowusda.blogspot.com/2015/10/former-ag-secretary-ann-veneman-talks.html

http://madcowtesting.blogspot.com/



The global impact of dementia Around the world, there will be one new case of dementia every 3 seconds.

50 million people worldwide are living with dementia in 2018.

This number will more than triple to 152 million by 2050.



2001


From: TSS (216-119-130-151.ipset10.wt.net) 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia Date: May 8, 2001 at 6:27 pm PST 

Subject: Evaluation of Cerebral Biopsies for the Diagnosis of Dementia 

Date: Tue, 8 May 2001 21:09:43 –0700 

From: "Terry S. Singeltary Sr." Reply-To: Bovine Spongiform Encephalopathy 

#### Bovine Spongiform Encephalopathy ####

snip...

see the Duke, Pa, Yale, and Mexican study here, showing the misdiagnosis of CJD TSE prion disease as Alzheimers ; 



Occasional PrP plaques are seen in cases of Alzheimer's Disease

5. Unfulfillment of Postulate 2

5.1 Occasional PrP plaques are seen in cases of Alzheimer’s Disease, where
they coexist with the more usual beta amyloid plaques. (Ref. Baker H.

F. Ridley R.M. Duchen L.W. Crow T.J. Bruton C.J. Induction of beta

3

(A4) amyloid in primates by injection of Alzheimer’s disease brain
homogenate. Mol. Neurobiol (1994) 8: 25-39.) (J/MN/8/25)


snip... full text; 






Occasional PrP plaques are seen in cases of Alzheimer’s Disease, where they coexist with the more usual beta amyloid plaques. 

(Ref. Baker H. F. Ridley R.M. Duchen L.W. Crow T.J. Bruton C.J. Induction of beta 3 (A4) amyloid in primates by injection of Alzheimer’s disease brain homogenate. Mol. Neurobiol (1994) 8: 25-39.) (J/MN/8/25) 


Singeltary comments;


Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 


>>> The only tenable public line will be that "more research is required’’ <<< 

>>> possibility on a transmissible prion remains open<<< 


O.K., so it’s about 23 years later, so somebody please tell me, when is "more research is required’’ enough time for evaluation ? 

Re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015) 

snip...see full Singeltary Nature comment here; 

Alzheimer's disease

let's not forget the elephant in the room. curing Alzheimer's would be a great and wonderful thing, but for starters, why not start with the obvious, lets prove the cause or causes, and then start to stop that. think iatrogenic, friendly fire, or the pass it forward mode of transmission. think medical, surgical, dental, tissue, blood, related transmission. think transmissible spongiform encephalopathy aka tse prion disease aka mad cow type disease... 

Commentary: Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy





Self-Propagative Replication of Ab Oligomers Suggests Potential Transmissibility in Alzheimer Disease 

*** Singeltary comment PLoS *** 

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ? 

Posted by flounder on 05 Nov 2014 at 21:27 GMT 


IN CONFIDENCE

5 NOVEMBER 1992

TRANSMISSION OF ALZHEIMER TYPE PLAQUES TO PRIMATES

[9. Whilst this matter is not at the moment directly concerned with the iatrogenic CJD cases from hgH, there remains a possibility of litigation here, and this presents an added complication. 

There are also results to be made available shortly 

(1) concerning a farmer with CJD who had BSE animals, 

(2) on the possible transmissibility of Alzheimer’s and 

(3) a CMO letter on prevention of iatrogenic CJD transmission in neurosurgery, all of which will serve to increase media interest.]




snip...see full Singeltary Nature comment here; 

re-Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy 

Nature 525, 247?250 (10 September 2015) doi:10.1038/nature15369 Received 26 April 2015 Accepted 14 August 2015 Published online 09 September 2015 Updated online 11 September 2015 Erratum (October, 2015)


I would kindly like to comment on the Nature Paper, the Lancet reply, and the newspaper articles.

First, I applaud Nature, the Scientist and Authors of the Nature paper, for bringing this important finding to the attention of the public domain, and the media for printing said findings.

Secondly, it seems once again, politics is getting in the way possibly of more important Transmissible Spongiform Encephalopathy TSE Prion scientific findings. findings that could have great implications for human health, and great implications for the medical surgical arena. but apparently, the government peer review process, of the peer review science, tries to intervene again to water down said disturbing findings.

where have we all heard this before? it's been well documented via the BSE Inquiry. have they not learned a lesson from the last time?

we have seen this time and time again in England (and other Country's) with the BSE mad cow TSE Prion debacle.

That 'anonymous' Lancet editorial was disgraceful. The editor, Dick Horton is not a scientist.

The pituitary cadavers were very likely elderly and among them some were on their way to CJD or Alzheimer's. Not a bit unusual. Then the recipients, who got pooled extracts injected from thousands of cadavers, were 100% certain to have been injected with both seeds. No surprise that they got both diseases going after thirty year incubations.

That the UK has a "system in place to assist science journalists" to squash embargoed science reports they find 'alarming' is pathetic.

Sounds like the journalists had it right in the first place: 'Alzheimer's may be a transmissible infection' in The Independent to 'You can catch Alzheimer's' in The Daily Mirror or 'Alzheimer's bombshell' in The Daily Express

if not for the journalist, the layperson would not know about these important findings.

where would we be today with sound science, from where we were 30 years ago, if not for the cloak of secrecy and save the industry at all cost mentality?

when you have a peer review system for science, from which a government constantly circumvents, then you have a problem with science, and humans die.

to date, as far as documented body bag count, with all TSE prion named to date, that count is still relatively low (one was too many in my case, Mom hvCJD), however that changes drastically once the TSE Prion link is made with Alzheimer's, the price of poker goes up drastically.

so, who makes that final decision, and how many more decades do we have to wait?

the iatrogenic mode of transmission of TSE prion, the many routes there from, load factor, threshold from said load factor to sub-clinical disease, to clinical disease, to death, much time is there to spread a TSE Prion to anywhere, but whom, by whom, and when, do we make that final decision to do something about it globally? how many documented body bags does it take? how many more decades do we wait? how many names can we make up for one disease, TSE prion?

Professor Collinge et al, and others, have had troubles in the past with the Government meddling in scientific findings, that might in some way involve industry, never mind human and or animal health.

FOR any government to continue to circumvent science for monetary gain, fear factor, or any reason, shame, shame on you.

in my opinion, it's one of the reasons we are at where we are at to date, with regards to the TSE Prion disease science i.e. money, industry, politics, then comes science, in that order.

greed, corporate, lobbyist there from, and government, must be removed from the peer review process of sound science, it's bad enough having them in the pharmaceutical aspect of healthcare policy making, in my opinion.

my mother died from confirmed hvCJD, and her brother (my uncle) Alzheimer's of some type (no autopsy?). just made a promise, never forget, and never let them forget, before I do.

I kindly wish to remind the public of the past, and a possible future we all hopes never happens again. ...



2012

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

Background

Alzheimer’s disease and Transmissible Spongiform Encephalopathy disease have both been around a long time, and was discovered in or around the same time frame, early 1900’s. Both diseases are incurable and debilitating brain disease, that are in the end, 100% fatal, with the incubation/clinical period of the Alzheimer’s disease being longer (most of the time) than the TSE prion disease. Symptoms are very similar, and pathology is very similar.

Methods

Through years of research, as a layperson, of peer review journals, transmission studies, and observations of loved ones and friends that have died from both Alzheimer’s and the TSE prion disease i.e. Heidenhain Variant Creutzfelt Jakob Disease CJD.

Results

I propose that Alzheimer’s is a TSE disease of low dose, slow, and long incubation disease, and that Alzheimer’s is Transmissible, and is a threat to the public via the many Iatrogenic routes and sources. It was said long ago that the only thing that disputes this, is Alzheimer’s disease transmissibility, or the lack of. The likelihood of many victims of Alzheimer’s disease from the many different Iatrogenic routes and modes of transmission as with the TSE prion disease.

Conclusions

There should be a Global Congressional Science round table event set up immediately to address these concerns from the many potential routes and sources of the TSE prion disease, including Alzheimer’s disease, and a emergency global doctrine put into effect to help combat the spread of Alzheimer’s disease via the medical, surgical, dental, tissue, and blood arena’s. All human and animal TSE prion disease, including Alzheimer’s should be made reportable in every state, and Internationally, WITH NO age restrictions. Until a proven method of decontamination and autoclaving is proven, and put forth in use universally, in all hospitals and medical, surgical arena’s, or the TSE prion agent will continue to spread. IF we wait until science and corporate politicians wait until politics lets science _prove_ this once and for all, and set forth regulations there from, we will all be exposed to the TSE Prion agents, if that has not happened already.

end...tss

Alzheimer’s disease and Transmissible Spongiform Encephalopathy prion disease, Iatrogenic, what if ?

source references ...end...tss 

Hello Nicole,

by all means, please do use my poster. but I thought this was already taken care of, and I could not attend for my poster presentation, therefore, it was not going to be presented. I have some health issues and could not make the trip.

please see old correspondence below...

From: Nicole Sanders Sent: Tuesday, April 10, 2012 5:37 PM To: Terry S. Singeltary Sr. Subject: RE: re-submission

Dear Terry,

The decline of proposal number 30756 is registered in the system. Thank you for your consideration.

Best Regards,

Nicole

Nicole Sanders

Senior Specialist, Membership & Conference Programming

______________________________________


From: xxxx 

To: Terry Singeltary 

Sent: Saturday, December 05, 2009 9:09 AM 

Subject: 14th ICID - abstract accepted for 'International Scientific Exchange'

Your preliminary abstract number: 670

Dear Mr. Singeltary,

On behalf of the Scientific Committee, I am pleased to inform you that your abstract

'Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009'

WAS accepted for inclusion in the INTERNATIONAL SCIENTIFIC EXCHANGE (ISE) section of the 14th International Congress on Infectious Diseases. Accordingly, your abstract will be included in the "Intl. Scientific Exchange abstract CD-rom" of the Congress which will be distributed to all participants.

Abstracts accepted for INTERNATIONAL SCIENTIFIC EXCHANGE are NOT PRESENTED in the oral OR poster sessions.

Your abstract below was accepted for: INTERNATIONAL SCIENTIFIC EXCHANGE

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Author: T. Singeltary; Bacliff, TX/US

Topic: Emerging Infectious Diseases Preferred type of presentation: International Scientific Exchange

This abstract has been ACCEPTED.

#0670: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Authors: T. Singeltary; Bacliff, TX/US

Title: Transmissible Spongiform encephalopathy (TSE) animal and human TSE in North America update October 2009

Body: Background

An update on atypical BSE and other TSE in North America. Please remember, the typical U.K. c-BSE, the atypical l-BSE (BASE), and h-BSE have all been documented in North America, along with the typical scrapie's, and atypical Nor-98 Scrapie, and to date, 2 different strains of CWD, and also TME. All these TSE in different species have been rendered and fed to food producing animals for humans and animals in North America (TSE in cats and dogs ?), and that the trading of these TSEs via animals and products via the USA and Canada has been immense over the years, decades.

Methods

12 years independent research of available data

Results

I propose that the current diagnostic criteria for human TSEs only enhances and helps the spreading of human TSE from the continued belief of the UKBSEnvCJD only theory in 2009. With all the science to date refuting it, to continue to validate this old myth, will only spread this TSE agent through a multitude of potential routes and sources i.e. consumption, medical i.e., surgical, blood, dental, endoscopy, optical, nutritional supplements, cosmetics etc.

Conclusion

I would like to submit a review of past CJD surveillance in the USA, and the urgent need to make all human TSE in the USA a reportable disease, in every state, of every age group, and to make this mandatory immediately without further delay. The ramifications of not doing so will only allow this agent to spread further in the medical, dental, surgical arena's. Restricting the reporting of CJD and or any human TSE is NOT scientific. Iatrogenic CJD knows NO age group, TSE knows no boundaries.

I propose as with Aguzzi, Asante, Collinge, Caughey, Deslys, Dormont, Gibbs, Gajdusek, Ironside, Manuelidis, Marsh, et al and many more, that the world of TSE Transmissible Spongiform Encephalopathy is far from an exact science, but there is enough proven science to date that this myth should be put to rest once and for all, and that we move forward with a new classification for human and animal TSE that would properly identify the infected species, the source species, and then the route.

Keywords: Transmissible Spongiform Encephalopathy Creutzfeldt Jakob Disease Prion

page 114 ;

http://ww2.isid.org/Downloads/14th_ICID_ISE_Abstracts.pdf

http://www.isid.org/14th_icid/

http://www.isid.org/publications/ICID_Archive.shtml

http://ww2.isid.org/Downloads/IMED2009_AbstrAuth.pdf

Tuesday, December 12, 2017 

Neuropathology of iatrogenic Creutzfeldt–Jakob disease and immunoassay of French cadaver-sourced growth hormone batches suggest possible transmission of tauopathy and long incubation periods for the transmission of Abeta pathology

http://tauopathies.blogspot.com/2017/12/neuropathology-of-iatrogenic.html


***> PRION CONFERENCE 2018 <***


P132 Aged cattle brain displays Alzheimer’s-like pathology that can be propagated in a prionlike manner

Ines Moreno-Gonzalez (1), George Edwards III (1), Rodrigo Morales (1), Claudia Duran-Aniotz (1), Mercedes Marquez (2), Marti Pumarola (2), Claudio Soto (1) 

(1) Mitchel Center for Alzheimer´s Disease and Related Brain Disorders, Department of Neurology, University of Texas Health Science Center at Houston, Houston, TX, USA (2) Animal Tissue Bank of Catalunya (BTAC), Department of Animal Medicine and Surgery, Veterinary Faculty, Universitat Autónoma de Barcelona, Bellaterra (Cerdanyola del Valles), Barcelona, Spain. 

Amyloid beta (Ab) and hyperphosphorylated tau (ptau) are the proteins undergoing misfolding in Alzheimer‘s disease (AD). Recent studies have shown that brain homogenates rich in amyloid aggregates are able to seed the misfolding and aggregation of amyloidogenic proteins inducing an earlier onset of the disease in mouse models of AD. This seeding behavior is analogous to the disease transmission by propagation of prion protein misfolding observed in prion diseases. Prion diseases can be transmitted across species by inoculation of the misfolded prion protein from one specie into an appropriate host. For example, material from cattle affected by bovine spongiform encephalopathy can be propagate in humans inducing variant Creutzfeldt-Jakob disease. In this study, we analyzed the presence of AD-related protein aggregates in the brain of old cows and investigated whether these aggregates are capable to induce pathology in animal models of AD. We observed that many of the typical hallmarks detected in human AD brains, including Ab aggregates and tangles, were present in cow brains. When cattle tissue containing Ab aggregates or ptau were intracerebrally inoculated into APP/PS1 or P301S mice, we observed an acceleration of brain misfolded protein deposition and faster cognitive impairment compared to controls. However, when the material was orally inoculated, no effect was observed. These results may contribute to uncover a previously unsuspected etiology surrounding some cases of sporadic AD. However, the early and controversial stage of the field of prion-like transmission in non-prion diseases added to the artificial nature of the animal models utilized for these studies, indicate that extrapolation of the results to humans should not be done without further experiments. 

P75 Determining transmissibility and proteome changes associated with abnormal bovine prionopathy 

Dudas S (1,2), Seuberlich T (3), Czub S (1,2) 

1. Canadian Food Inspection Agency, NCAD Lethbridge Laboratory, Canada 2. University of Calgary, Canada 3. University of Bern, Switzerland. 

In prion diseases, it is believed that altered protein conformation encodes for different pathogenic strains. Currently 3 different strains of bovine spongiform encephalopathy (BSE) are confirmed. Diagnostic tests for BSE are able to identify animals infected with all 3 strains, however, several diagnostic laboratories have reported samples with inconclusive results which are challenging to classify. It was suggested that these may be novel strains of BSE; to determine transmissibility, brain material from index cases were inoculated into cattle. 

In the first passage, cattle were intra-cranially challenged with brain homogenate from 2 Swiss animals with abnormal prionopathy. The challenged cattle incubated for 3 years and were euthanized with no clinical signs of neurologic disease. Animals were negative when tested on validated diagnostic tests but several research methods demonstrated changes in the prion conformation in these cattle, including density gradient centrifugation and immunohistochemistry. Currently, samples from the P1 animals are being tested for changes in protein levels using 2-D Fluorescence Difference Gel Electrophoresis (2D DIGE) and mass spectrometry. It is anticipated that, if a prionopathy is present, this approach should identify pathways and targets to decipher the source of altered protein conformation. In addition, a second set of cattle have been challenged with brain material from the first passage. Ideally, these cattle will be given a sufficient incubation period to provide a definitive answer to the question of transmissibility. 

=====prion 2018===


Singeltary comments;


IBNC BSE TSE Prion mad cow disease

 ***however in 1 C-type challenged animal, Prion 2015 Poster Abstracts S67 PrPsc was not detected using rapid tests for BSE.

***Subsequent testing resulted in the detection of pathologic lesion in unusual brain location and PrPsc detection by PMCA only.

*** IBNC Tauopathy or TSE Prion disease, it appears, no one is sure ***

Posted by Terry S. Singeltary Sr. on 03 Jul 2015 at 16:53 GMT



MRSA



wasted days and wasted nights...Freddy Fender

stupid is, as stupid does, and sometimes you can't fix stupid $$$

Terry S. Singeltary Sr.
Bacliff, Texas USA 77518