The proposed Transmissible Spongiform Encephalopathies (England)
(Amendment) Regulations 2012
Consultation start: 21 June 2012 Consultation end: 13 September 2012
Summary Defra invites views on the proposed Transmissible Spongiform
Encephalopathies (England) (Amendment) Regulations 2012. The proposed new
Regulations would amend and update the existing Transmissible Spongiform
Encephalopathies (England) Regulations 2010. The proposed amendments can be
divided into three elements: •To update the 2010 Regulations to reflect the full
range of options available in EU TSE legislation for controlling classical
scrapie and to take the option of monitoring holdings affected by classical
scrapie, as opposed to genotyping of sheep followed by killing and destruction
of classical scrapie susceptible animals, as our default position for all
current and future cases. •To update the 2010 Regulations to align compensation
rates for BSE with the Cattle Compensation (England) Order 2012, which will come
into force on 1 July 2012. This will better reflect market values in determining
compensation for BSE, and maintain its existing alignment with that for other
major notifiable cattle diseases. •To make minor technical amendments to the
2010 Regulations which will fulfil Government requirements on better regulation,
clarify enforcement procedures, limit unqualified appeals against killing of
cattle, and remove an obligation and an offence. You may comment on any aspect
of the proposals. How to respond Name: Katie Barnes Email:
tseamendmentregulations@defra.gsi.gov.uk Address: Katie Barnes, Area 5A, 9
Millbank, c/o Defra, 17 Smith Square, London SW1P 3JR Further Information
•Transmissible Spongiform Encephalopathies (TSEs) •The Transmissible Spongiform
Encephalopathies (England) Regulations 2010
Downloads
21 June 2012 Consultation document (pdf, 140 KB) Consultation letter (pdf,
81 KB) List of consultees (pdf, 32 KB) Impact Assessment (pdf, 282 KB) Draft
Transmissible Spongiform Encephalopathies (England) (Amendment) Regulations 2012
(pdf, 47 KB)
Page published: June 21, 2012
Related items
Tags: Transmissible Spongiform Encephalopathies, tse
The proposed Transmissible Spongiform Encephalopathies (England)
(Amendment) Regulations 2012 Consultation start: 21 June 2012
Consultation end: 13 September 2012
Consultation on the proposed Transmissible Spongiform Encephalopathies
(England) (Amendment) Regulations 2012
May 2012
(EFSA) and the European Centre for Disease Prevention and Control jointly
advised in 2011 that BSE is the only animal TSE which has been shown to be a
risk to human health and that there is no epidemiological evidence to suggest
that classical scrapie is a risk to human health.
???
HOWEVER what the EFSA stated was ; _at present_ the only TSE agent
demonstrated to be zoonotic is the Classical BSE agent,
AND THAT ; However, the epidemiological evidence in relation to sporadic
CJD cannot be regarded as definitive, and the possibility that a small
proportion of cases are zoonotic cannot be excluded.
please see ;
The conclusions state that, at present, the only TSE agent demonstrated to
be zoonotic is the Classical BSE agent. Active screening has allowed the
identification of three new forms of animal TSEs (H-type Atypical BSE, L-type
Atypical BSE and Atypical scrapie), but the information obtained has major
limitations due to the unknown sensitivity of the current monitoring system for
these TSEs. There is no epidemiological evidence to suggest that Classical
scrapie is zoonotic. The epidemiological data are too limited to conclude
whether the Atypical scrapie agent has a zoonotic potential. Transmission
experiments to human PrP transgenic mice or primates suggest that some TSE
agents other than the Classical BSE agent in cattle (namely L-type Atypical BSE,
Classical BSE in sheep, TME, CWD agents) might have zoonotic potential and
indicate that that of the L-type Atypical BSE agent appears similar or even
higher than that of the Classical BSE agent. A single study reported efficient
transmission of a natural sheep Classical scrapie isolate to primates.
snip...
However, the epidemiological evidence in relation to sporadic CJD cannot
be regarded as definitive, and the possibility that a small proportion of cases
are zoonotic cannot be excluded.
© European Food Safety Authority, 2011
let’s review a bit of science, shall we ;
1: J Infect Dis 1980 Aug;142(2):205-8
Oral transmission of kuru, Creutzfeldt-Jakob disease, and scrapie to
nonhuman primates.
Gibbs CJ Jr, Amyx HL, Bacote A, Masters CL, Gajdusek DC.
Kuru and Creutzfeldt-Jakob disease of humans and scrapie disease of sheep
and goats were transmitted to squirrel monkeys (Saimiri sciureus) that were
exposed to the infectious agents only by their nonforced consumption of known
infectious tissues. The asymptomatic incubation period in the one monkey exposed
to the virus of kuru was 36 months; that in the two monkeys exposed to the virus
of Creutzfeldt-Jakob disease was 23 and 27 months, respectively; and that in the
two monkeys exposed to the virus of scrapie was 25 and 32 months, respectively.
Careful physical examination of the buccal cavities of all of the monkeys failed
to reveal signs or oral lesions. One additional monkey similarly exposed to kuru
has remained asymptomatic during the 39 months that it has been under
observation.
snip...
The successful transmission of kuru, Creutzfeldt-Jakob disease, and scrapie
by natural feeding to squirrel monkeys that we have reported provides further
grounds for concern that scrapie-infected meat may occasionally give rise in
humans to Creutzfeldt-Jakob disease.
PMID: 6997404
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=6997404&dopt=Abstract
12/10/76 AGRICULTURAL RESEARCH COUNCIL REPORT OF THE ADVISORY COMMITTE ON
SCRAPIE Office Note CHAIRMAN: PROFESSOR PETER WILDY
snip...
A The Present Position with respect to Scrapie A] The Problem Scrapie is a
natural disease of sheep and goats. It is a slow and inexorably progressive
degenerative disorder of the nervous system and it ia fatal. It is enzootic in
the United Kingdom but not in all countries. The field problem has been reviewed
by a MAFF working group (ARC 35/77). It is difficult to assess the incidence in
Britain for a variety of reasons but the disease causes serious financial loss;
it is estimated that it cost Swaledale breeders alone $l.7 M during the five
years 1971-1975. A further inestimable loss arises from the closure of certain
export markets, in particular those of the United States, to British sheep. It
is clear that scrapie in sheep is important commercially and for that reason
alone effective measures to control it should be devised as quickly as possible.
Recently the question has again been brought up as to whether scrapie is
transmissible to man. This has followed reports that the disease has been
transmitted to primates.
One particularly lurid speculation (Gajdusek 1977) conjectures that the
agents of scrapie, kuru, Creutzfeldt-Jakob disease and transmissible
encephalopathy of mink are varieties of a single "virus". The U.S. Department of
Agriculture concluded that it could "no longer justify or permit scrapie-blood
line and scrapie-exposed sheep and goats to be processed for human or animal
food at slaughter or rendering plants" (ARC 84/77)" The problem is emphasised by
the finding that some strains of scrapie produce lesions identical to the once
which characterise the human dementias" Whether true or not. the hypothesis that
these agents might be transmissible to man raises two considerations. First, the
safety of laboratory personnel requires prompt attention. Second, action such as
the "scorched meat" policy of USDA makes the solution of the acrapie problem
urgent if the sheep industry is not to suffer grievously.
snip...
76/10.12/4.6
Nature. 1972 Mar 10;236(5341):73-4.
Transmission of scrapie to the cynomolgus monkey (Macaca
fascicularis).
Gibbs CJ Jr, Gajdusek DC. Nature 236, 73 - 74 (10 March 1972);
doi:10.1038/236073a0
Transmission of Scrapie to the Cynomolgus Monkey (Macaca
fascicularis)
C. J. GIBBS jun. & D. C. GAJDUSEK National Institute of Neurological
Diseases and Stroke, National Institutes of Health, Bethesda, Maryland
SCRAPIE has been transmitted to the cynomolgus, or crab-eating, monkey
(Macaca fascicularis) with an incubation period of more than 5 yr from the time
of intracerebral inoculation of scrapie-infected mouse brain. The animal
developed a chronic central nervous system degeneration, with ataxia, tremor and
myoclonus with associated severe scrapie-like pathology of intensive astroglial
hypertrophy and proliferation, neuronal vacuolation and status spongiosus of
grey matter. The strain of scrapie virus used was the eighth passage in Swiss
mice (NIH) of a Compton strain of scrapie obtained as ninth intracerebral
passage of the agent in goat brain, from Dr R. L. Chandler (ARC, Compton,
Berkshire).
Wednesday, February 16, 2011
IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
Wednesday, February 16, 2011
IN CONFIDENCE SCRAPIE TRANSMISSION TO CHIMPANZEES
IN CONFIDENCE
reference...
RB3.20
TRANSMISSION TO CHIMPANZEES
1. Kuru and CJD have been successfully transmitted to chimpanzees but
scrapie and TME have not.
2. We cannot say that scrapie will not transmit to chimpanzees. There are
several scrapie strains and I am not aware that all have been tried (that would
have to be from mouse passaged material). Nor has a wide enough range of field
isolates subsequently strain typed in mice been inoculated by the appropriate
routes (i/c, ilp and i/v) :
3. I believe the proposed experiment to determine transmissibility, if
conducted, would only show the susceptibility or resistance of the chimpanzee to
infection/disease by the routes used and the result could not be interpreted for
the predictability of the susceptibility for man. Proposals for prolonged oral
exposure of chimpanzees to milk from cattle were suggested a long while ago and
rejected.
4. In view of Dr Gibbs' probable use of chimpazees Mr Wells' comments
(enclosed) are pertinent. I have yet to receive a direct communication from Dr
Schellekers but before any collaboration or provision of material we should
identify the Gibbs' proposals and objectives.
5. A positive result from a chimpanzee challenged severely would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
6. A negative result would take a lifetime to determine but that would be a
shorter period than might be available for human exposure and it would still not
answer the question regarding mans' susceptibility. In the meantime no doubt the
negativity would be used defensively. It would however be counterproductive if
the experiment finally became positive. We may learn more about public reactions
following next Monday' s meeting.
R. Bradley
23 September 1990
CVO (+Mr Wells' comments)
Dr T W A Little
Dr B J Shreeve
90/9.23/1.1.
IN CONFIDENCE CHIMPANZEES
CODE 18-77 Reference RB3.46
Some further information that may assist in decision making has been gained
by discussion with Dr Rosalind Ridley.
She says that careful study of Gajdusek's work shows no increased
susceptibility of chimpanzees over New World Monkeys such as Squirrel Monkeys.
She does not think it would tell you anything about the susceptibility to man.
Also Gajdusek did not, she believes, challenge chimpanzees with scrapie as
severely as we did pigs and we know little of that source of scrapie.
Comparisons would be difficult. She also would not expect the Home Office to
sanction such experiments here unless there was a very clear and important
objective that would be important for human health protection. She doubted such
a case could be made. If this is the case she thought it would be unethical to
do an experiment abroad because we could not do it in our own country.
Retrospectively she feels they should have put up more marmosets than they
did. They all remain healthy. They would normally regard the transmission as
negative if no disease resulted in five years.
We are not being asked for a decision but I think that before we made one
we should gain as much knowledge as we can. If we decided to proceed we would
have to bear any criticisms for many years if there was an adverse view by
scientists ormedia. This should not be undertaken lightly. There is already
some adverse comment here, I gather, on the pig experiment though that will
subside.
The Gibbs' (as' distinct from Schellekers') study is somewhat different. We
are merely supplying material for comparative studies in a laboratory with the
greatest experience of human SEs in the world and it has been sanctioned by USDA
(though we do not know for certain yet if chimpanzees specifically will be
used). This would keep it at a lower profile than if we conducted such an
experiment in the UK or Europe.
I consider we must have very powerful and defendable objectives to go
beyond Gibbs' proposed experiments and should not initiate others just because
an offer has been made.
Scientists have a responsibility to seek other methods of investigative
research other than animal experimentation. At present no objective has
convinced me we need to do research using Chimpanzees - a species in need of
protection. Resisting such proposals would enable us to communicate that
information to the scientist and the public should the need arise. A line would
have been drawn.
CVO cc Dr T Dr B W A Little Dr B J Shreeve
R Bradley
26 September 1990
90/9.26/3.2
SNIP...SEE FULL TEXT ;
5. A positive result from a chimpanzee challenged severly would likely
create alarm in some circles even if the result could not be interpreted for
man. I have a view that all these agents could be transmitted provided a large
enough dose by appropriate routes was given and the animals kept long enough.
Until the mechanisms of the species barrier are more clearly understood it might
be best to retain that hypothesis.
snip...
R. BRADLEY
1992
IN CONFIDENCE
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367)
1992
NEW BRAIN DISORDER
3. WHAT ABOUT REPORTS OF NEW FORM OF BSE ?
THE VETERINARY RECORD HAS PUBLISHED AN ARTICLE ON A NEW BRAIN DISORDER OF
CATTLE DISCOVERED THROUGH OUR CONTROL MEASURES FOR BSE. ALTHOUGH IT PRESENTS
SIMILAR CLINICAL SIGNS TO BSE THERE ARE MAJOR DIFFERENCES IN HISTOPATHOLOGY AND
INCUBATION PERIODS BETWEEN THE TWO. MUST EMPHASISE THAT THIS IS _NOT_ BSE.
4. IS THIS NEW BRAIN DISORDER A THREAT ?
WE DO NOT EVEN KNOW WHETHER THE AGENT OF THIS DISEASE IS TRANSMISSIBLE. IN
ANY CASE, CASES SO FAR IDENTIFIED HAD SHOWN SIMILAR SYMPTOMS TO THOSE OF BSE,
AND THEREFORE HAVE BEEN SLAUGHTERED AND INCINERATED, SO THAT IF A TRANSMISSIBLE
AGENT WERE INVOLVED IT WOULD HAVE BEEN ELIMINATED. ...
Tuesday, November 17, 2009
SEAC NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS (IBNC) FROM
THE VETERINARY LABORATORIES AGENCY (VLA) SEAC 103/1
NEW RESULTS ON IDIOPATHIC BRAINSTEM NEURONAL CHROMATOLYSIS
"All of the 15 cattle tested showed that the brains had abnormally
accumulated PrP"
2009
''THE LINE TO TAKE'' ON IBNC $$$ 1995 $$$
1995
page 9 of 14 ;
30. The Committee noted that the results were unusual. the questioned
whether there could be coincidental BSE infection or contamination with scrapie.
Dr. Tyrell noted that the feeling of the committee was that this did not
represent a new agent but it was important to be prepared to say something
publicly about these findings. A suggested line to take was that these were
scientifically unpublishable results but in line with the policy of openness
they would be made publicly available and further work done to test their
validity. Since the BSE precautions were applied to IBNC cases, human health was
protected. Further investigations should be carried out on isolations from
brains of IBNC cases with removal of the brain and subsequent handling under
strict conditions to avoid the risk of any contamination.
31. Mr. Bradley informed the Committee that the CVO had informed the CMO
about the IBNC results and the transmission from retina and he, like the
Committee was satisfied that the controls already in place or proposed were
adequate. ... snip... see full text
http://web.archive.org/web/20030327015011/http://www.bseinquiry.gov.uk/files/yb/1995/06/21005001.pdf
Wednesday, July 28, 2010
Atypical prion proteins and IBNC in cattle DEFRA project code SE1796 FOIA
Final report
IN CONFIDENCE
BSE ATYPICAL LESION DISTRIBUTION
http://web.archive.org/web/20041226015813/http://www.bseinquiry.gov.uk/files/yb/1993/03/14001001.pdf
Tuesday, November 02, 2010
BSE - ATYPICAL LESION DISTRIBUTION (RBSE 92-21367) statutory (obex only)
diagnostic criteria CVL 1992
P03.141
Aspects of the Cerebellar Neuropathology in Nor98
Gavier-WidƩn, D1; Benestad, SL2; Ottander, L1; Westergren, E1 1National
Veterinary Insitute, Sweden; 2National Veterinary Institute,
Norway Nor98 is a prion disease of old sheep and goats. This atypical form
of scrapie was first described in Norway in 1998. Several features of Nor98 were
shown to be different from classical scrapie including the distribution of
disease associated prion protein (PrPd) accumulation in the brain. The
cerebellum is generally the most affected brain area in Nor98. The study here
presented aimed at adding information on the neuropathology in the cerebellum of
Nor98 naturally affected sheep of various genotypes in Sweden and Norway. A
panel of histochemical and immunohistochemical (IHC) stainings such as IHC for
PrPd, synaptophysin, glial fibrillary acidic protein, amyloid, and cell markers
for phagocytic cells were conducted. The type of histological lesions and tissue
reactions were evaluated. The types of PrPd deposition were characterized. The
cerebellar cortex was regularly affected, even though there was a variation in
the severity of the lesions from case to case. Neuropil vacuolation was more
marked in the molecular layer, but affected also the granular cell layer. There
was a loss of granule cells. Punctate deposition of PrPd was characteristic. It
was morphologically and in distribution identical with that of synaptophysin,
suggesting that PrPd accumulates in the synaptic structures. PrPd was also
observed in the granule cell layer and in the white matter. The pathology
features of Nor98 in the cerebellum of the affected sheep showed similarities
with those of sporadic Creutzfeldt-Jakob disease in humans.
***The pathology features of Nor98 in the cerebellum of the affected sheep
showed similarities with those of sporadic Creutzfeldt-Jakob disease in
humans.
PR-26
NOR98 SHOWS MOLECULAR FEATURES REMINISCENT OF GSS
R. Nonno1, E. Esposito1, G. Vaccari1, E. Bandino2, M. Conte1, B.
Chiappini1, S. Marcon1, M. Di Bari1, S.L. Benestad3, U. Agrimi1 1 Istituto
Superiore di SanitĆ , Department of Food Safety and Veterinary Public Health,
Rome, Italy (mailto:romolo.nonno%40iss.it); 2 Istituto Zooprofilattico della
Sardegna, Sassari, Italy; 3 National Veterinary Institute, Department of
Pathology, Oslo, Norway
Molecular variants of PrPSc are being increasingly investigated in sheep
scrapie and are generally referred to as "atypical" scrapie, as opposed to
"classical scrapie". Among the atypical group, Nor98 seems to be the best
identified. We studied the molecular properties of Italian and Norwegian Nor98
samples by WB analysis of brain homogenates, either untreated, digested with
different concentrations of proteinase K, or subjected to enzymatic
deglycosylation. The identity of PrP fragments was inferred by means of
antibodies spanning the full PrP sequence. We found that undigested brain
homogenates contain a Nor98-specific PrP fragment migrating at 11 kDa (PrP11),
truncated at both the C-terminus and the N-terminus, and not N-glycosylated.
After mild PK digestion, Nor98 displayed full-length PrP (FL-PrP) and
N-glycosylated C-terminal fragments (CTF), along with increased levels of PrP11.
Proteinase K digestion curves (0,006-6,4 mg/ml) showed that FL-PrP and CTF are
mainly digested above 0,01 mg/ml, while PrP11 is not entirely digested even at
the highest concentrations, similarly to PrP27-30 associated with classical
scrapie. Above 0,2 mg/ml PK, most Nor98 samples showed only PrP11 and a fragment
of 17 kDa with the same properties of PrP11, that was tentatively identified as
a dimer of PrP11. Detergent solubility studies showed that PrP11 is insoluble in
2% sodium laurylsorcosine and is mainly produced from detergentsoluble,
full-length PrPSc. Furthermore, among Italian scrapie isolates, we found that a
sample with molecular and pathological properties consistent with Nor98 showed
plaque-like deposits of PrPSc in the thalamus when the brain was analysed by
PrPSc immunohistochemistry. Taken together, our results show that the
distinctive pathological feature of Nor98 is a PrP fragment spanning amino acids
~ 90-155. This fragment is produced by successive N-terminal and C-terminal
cleavages from a full-length and largely detergent-soluble PrPSc, is produced in
vivo and is extremely resistant to PK digestion.
*** Intriguingly, these conclusions suggest that some pathological features
of Nor98 are reminiscent of Gerstmann-StrƤussler-Scheinker disease.
119
A newly identified type of scrapie agent can naturally infect sheep with
resistant PrP genotypes
Annick Le Dur*,?, Vincent BƩringue*,?, Olivier AndrƩoletti?, Fabienne
Reine*, Thanh Lan LaĆÆ*, Thierry Baron§, BjĆørn Bratberg¶, Jean-Luc Vilotte?,
Pierre Sarradin**, Sylvie L. Benestad¶, and Hubert Laude*,? +Author
Affiliations
*Virologie Immunologie MolƩculaires and ?GƩnƩtique Biochimique et
CytogƩnƩtique, Institut National de la Recherche Agronomique, 78350
Jouy-en-Josas, France; ?UnitƩ Mixte de Recherche, Institut National de la
Recherche Agronomique-Ecole Nationale VƩtƩrinaire de Toulouse, Interactions HƓte
Agent PathogĆØne, 31066 Toulouse, France; §Agence FranƧaise de SĆ©curitĆ© Sanitaire
des Aliments, UnitƩ Agents Transmissibles Non Conventionnels, 69364 Lyon,
France; **Pathologie Infectieuse et Immunologie, Institut National de la
Recherche Agronomique, 37380 Nouzilly, France; and ¶Department of Pathology,
National Veterinary Institute, 0033 Oslo, Norway
***Edited by Stanley B. Prusiner, University of California, San Francisco,
CA (received for review March 21, 2005)
Abstract Scrapie in small ruminants belongs to transmissible spongiform
encephalopathies (TSEs), or prion diseases, a family of fatal neurodegenerative
disorders that affect humans and animals and can transmit within and between
species by ingestion or inoculation. Conversion of the host-encoded prion
protein (PrP), normal cellular PrP (PrPc), into a misfolded form, abnormal PrP
(PrPSc), plays a key role in TSE transmission and pathogenesis. The intensified
surveillance of scrapie in the European Union, together with the improvement of
PrPSc detection techniques, has led to the discovery of a growing number of
so-called atypical scrapie cases. These include clinical Nor98 cases first
identified in Norwegian sheep on the basis of unusual pathological and PrPSc
molecular features and "cases" that produced discordant responses in the rapid
tests currently applied to the large-scale random screening of slaughtered or
fallen animals. Worryingly, a substantial proportion of such cases involved
sheep with PrP genotypes known until now to confer natural resistance to
conventional scrapie. Here we report that both Nor98 and discordant cases,
including three sheep homozygous for the resistant PrPARR allele (A136R154R171),
efficiently transmitted the disease to transgenic mice expressing ovine PrP, and
that they shared unique biological and biochemical features upon propagation in
mice. *** These observations support the view that a truly infectious TSE agent,
unrecognized until recently, infects sheep and goat flocks and may have
important implications in terms of scrapie control and public health.
Monday, December 1, 2008
When Atypical Scrapie cross species barriers
Authors
Andreoletti O., Herva M. H., Cassard H., Espinosa J. C., Lacroux C., Simon
S., Padilla D., Benestad S. L., Lantier F., Schelcher F., Grassi J., Torres, J.
M., UMR INRA ENVT 1225, Ecole Nationale Veterinaire de Toulouse.France;
ICISA-INlA, Madrid, Spain; CEA, IBiTec-5, DSV, CEA/Saclay, Gif sur Yvette cedex,
France; National Veterinary Institute, Postboks 750 Sentrum, 0106 Oslo, Norway,
INRA IASP, Centre INRA de Tours, 3738O Nouzilly, France.
Content
Atypical scrapie is a TSE occurring in small ruminants and harbouring
peculiar clinical, epidemiological and biochemical properties. Currently this
form of disease is identified in a large number of countries. In this study we
report the transmission of an atypical scrapie isolate through different species
barriers as modeled by transgenic mice (Tg) expressing different species PRP
sequence.
The donor isolate was collected in 1995 in a French commercial sheep flock.
inoculation into AHQ/AHQ sheep induced a disease which had all
neuro-pathological and biochemical characteristics of atypical scrapie.
Transmitted into Transgenic mice expressing either ovine or PrPc, the isolate
retained all the described characteristics of atypical scrapie.
Surprisingly the TSE agent characteristics were dramatically different
v/hen passaged into Tg bovine mice. The recovered TSE agent had biological and
biochemical characteristics similar to those of atypical BSE L in the same mouse
model. Moreover, whereas no other TSE agent than BSE were shown to transmit into
Tg porcine mice, atypical scrapie was able to develop into this model, albeit
with low attack rate on first passage.
Furthermore, after adaptation in the porcine mouse model this prion showed
similar biological and biochemical characteristics than BSE adapted to this
porcine mouse model. Altogether these data indicate.
(i) the unsuspected potential abilities of atypical scrapie to cross
species barriers
(ii) the possible capacity of this agent to acquire new characteristics
when crossing species barrier
These findings raise some interrogation on the concept of TSE strain and on
the origin of the diversity of the TSE agents and could have consequences on
field TSE control measures.
another atypical Nor-98 Scrapie case documented in Canada for 2012 Date
confirmed Location Animal type infected May 31* Quebec Sheep
Sunday, April 29, 2012
Scrapie confirmed at quarantined sheep farm Canada CFIA
Wednesday, April 4, 2012
20120402 - Breach of quarantine/Violation de la mise en quarantaine of an
ongoing Scrapie investigation
Thursday, February 23, 2012
Atypical Scrapie NOR-98 confirmed Alberta Canada sheep January 2012
Thursday, March 29, 2012
atypical Nor-98 Scrapie has spread from coast to coast in the USA 2012
NIAA Annual Conference April 11-14, 2011San Antonio, Texas
Monday, November 30, 2009
USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH
CODE
Thursday, June 23, 2011
Experimental H-type bovine spongiform encephalopathy characterized by
plaques and glial- and stellate-type prion protein deposits
Thursday, June 21, 2012
Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy
Associated with E211K Prion Protein Polymorphism
Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy
Associated with E211K Prion Protein Polymorphism
Justin J. Greenlee1*, Jodi D. Smith1, M. Heather West Greenlee2, Eric M.
Nicholson1
1 National Animal Disease Center, United States Department of Agriculture,
Agricultural Research Service, Ames, Iowa, United States of America, 2 Iowa
State University, Ames, Iowa, United States of America
snip...
The disease reported here was true to the molecular characterization of the
case diagnosed in 2006, which is the best approximation of H-type BSE that may
occur later in life in cattle with the E211K polymorphism. Based on the case
history of the original 2006 E211K BSE case and the fact that the vast majority
of naturally-occurring atypical BSE cases involve older cattle (.10 yrs of age),
we speculate that a pre-clinical period of at least 10 years will be required
for BSE-H to naturally occur in E211K cattle without prior exposure to
infectious material. While an inoculation study cannot definitely prove that the
U.S. 2006 BSEH case was due to the E211K polymorphism, i.e. an inherited TSE,
the results of this study do suggest that cattle with the K211 allele are
predisposed to rapid onset of BSE-H when exposed.
Most significantly it must be determined if the molecular phenotype of this
cattle TSE remains stable when transmitted to cattle without the E211K
polymorphism as several other isolates of atypical BSE have been shown to adopt
a molecular profile consistent with classical BSE after passage in transgenic
mice expressing bovine PrPC [40] or multiple passages in wild type mice [23].
Results of ongoing studies, namely passage of the E211K Htype isolate into
wild-type cattle, will lend further insight into what role, if any, genetic and
sporadic forms of BSE may have played in the origins of classical BSE. Atypical
cases presumably of spontaneous or, in the case of E211K BSE-H, genetic origins
highlight that it may not be possible to eradicate BSE entirely and that it
would be hazardous to remove disease control measures such as prohibiting the
feeding of meat and bone meal to ruminants.
snip...
see full text ;
Thursday, June 21, 2012
Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy
Associated with E211K Prion Protein Polymorphism
P.4.23
Transmission of atypical BSE in humanized mouse models
Liuting Qing1, Wenquan Zou1, Cristina Casalone2, Martin Groschup3, Miroslaw
Polak4, Maria Caramelli2, Pierluigi Gambetti1, Juergen Richt5, Qingzhong Kong1
1Case Western Reserve University, USA; 2Instituto Zooprofilattico Sperimentale,
Italy; 3Friedrich-Loeffler-Institut, Germany; 4National Veterinary Research
Institute, Poland; 5Kansas State University (Previously at USDA National Animal
Disease Center), USA
Background: Classical BSE is a world-wide prion disease in cattle, and the
classical BSE strain (BSE-C) has led to over 200 cases of clinical human
infection (variant CJD). Atypical BSE cases have been discovered in three
continents since 2004; they include the L-type (also named BASE), the H-type,
and the first reported case of naturally occurring BSE with mutated bovine PRNP
(termed BSE-M). The public health risks posed by atypical BSE were largely
undefined.
Objectives: To investigate these atypical BSE types in terms of their
transmissibility and phenotypes in humanized mice. Methods: Transgenic mice
expressing human PrP were inoculated with several classical (C-type) and
atypical (L-, H-, or Mtype) BSE isolates, and the transmission rate, incubation
time, characteristics and distribution of PrPSc, symptoms, and histopathology
were or will be examined and compared.
Results: Sixty percent of BASE-inoculated humanized mice became infected
with minimal spongiosis and an average incubation time of 20-22 months, whereas
only one of the C-type BSE-inoculated mice developed prion disease after more
than 2 years. Protease-resistant PrPSc in BASE-infected humanized Tg mouse
brains was biochemically different from bovine BASE or sCJD. PrPSc was also
detected in the spleen of 22% of BASE-infected humanized mice, but not in those
infected with sCJD. Secondary transmission of BASE in the humanized mice led to
a small reduction in incubation time.*** The atypical BSE-H strain is also
transmissible with distinct phenotypes in the humanized mice, but no BSE-M
transmission has been observed so far.
Discussion: Our results demonstrate that BASE is more virulent than
classical BSE, has a lymphotropic phenotype, and displays a modest transmission
barrier in our humanized mice. BSE-H is also transmissible in our humanized Tg
mice. The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
P26 TRANSMISSION OF ATYPICAL BOVINE SPONGIFORM ENCEPHALOPATHY (BSE) IN
HUMANIZED MOUSE MODELS
Liuting Qing1, Fusong Chen1, Michael Payne1, Wenquan Zou1, Cristina
Casalone2, Martin Groschup3, Miroslaw Polak4, Maria Caramelli2, Pierluigi
Gambetti1, Juergen Richt5*, and Qingzhong Kong1 1Department of Pathology, Case
Western Reserve University, Cleveland, OH 44106, USA; 2CEA, Istituto
Zooprofilattico Sperimentale, Italy; 3Friedrich-Loeffler-Institut, Germany;
4National Veterinary Research Institute, Poland; 5Kansas State University,
Diagnostic Medicine/Pathobiology Department, Manhattan, KS 66506, USA. *Previous
address: USDA National Animal Disease Center, Ames, IA 50010, USA
Classical BSE is a world-wide prion disease in cattle, and the classical
BSE strain (BSE-C) has led to over 200 cases of clinical human infection
(variant CJD). Two atypical BSE strains, BSE-L (also named BASE) and BSE-H, have
been discovered in three continents since 2004. The first case of naturally
occurring BSE with mutated bovine PrP gene (termed BSE-M) was also found in 2006
in the USA. The transmissibility and phenotypes of these atypical BSE
strains/isolates in humans were unknown. We have inoculated humanized transgenic
mice with classical and atypical BSE strains (BSE-C, BSE-L, BSE-H) and the BSE-M
isolate. We have found that the atypical BSE-L strain is much more virulent than
the classical BSE-C.*** The atypical BSE-H strain is also transmissible in the
humanized transgenic mice with distinct phenotype, but no transmission has been
observed for the BSE-M isolate so far.
III International Symposium on THE NEW PRION BIOLOGY: BASIC SCIENCE,
DIAGNOSIS AND THERAPY 2 - 4 APRIL 2009, VENEZIA (ITALY)
I ask Professor Kong ;
Thursday, December 04, 2008 3:37 PM Subject: RE: re--Chronic Wating Disease
(CWD) and Bovine Spongiform Encephalopathies (BSE): Public Health Risk
Assessment
''IS the h-BSE more virulent than typical BSE as well, or the same as cBSE,
or less virulent than cBSE? just curious.....''
Professor Kong reply ;
.....snip
''As to the H-BSE, we do not have sufficient data to say one way or
another, but we have found that H-BSE can infect humans. I hope we could publish
these data once the study is complete. Thanks for your interest.''
Best regards, Qingzhong Kong, PhD Associate Professor Department of
Pathology Case Western Reserve University Cleveland, OH 44106 USA
END...TSS
Thursday, December 04, 2008 2:37 PM
"we have found that H-BSE can infect humans."
personal communication with Professor Kong. ...TSS
BSE-H is also transmissible in our humanized Tg mice.
The possibility of more than two atypical BSE strains will be discussed.
Supported by NINDS NS052319, NIA AG14359, and NIH AI 77774.
Saturday, June 25, 2011
Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus
Macaque
"BSE-L in North America may have existed for decades"
Sunday, June 26, 2011
Risk Analysis of Low-Dose Prion Exposures in Cynomolgus Macaque
Friday, December 23, 2011
Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate
Model
Volume 18, Number 1—January 2012 Dispatch
PO-028: Oral transmission of L-type bovine spongiform encephalopathy
(L-BSE) in primate model Microcebus murinus
Nadine Mestre-Frances,1 Simon Nicot,2 Sylvie Rouland,1 Anne-Gaƫlle
Biacabe,2 Isabelle Quadrio,3 Armand Perret-Liaudet,3 Thierry Baron,2 Jean-Michel
Verdier1 1IN SER M UM2; Montpellier, France; 2Anses; Lyon, France; 3Hopitaux
Civils de Lyon; Lyon, France
An atypical form of bovine spongiform encephalopathy has been identified in
cattle in Europe, North America and Japan and was designed as L-type BSE (L-BSE)
due to the lower apparent molecular mass of the unglycosylated,
protease-resistant prion protein (PrPres) detected by western blot compared with
classical BSE. Experimental evidences from studies in transgenic mice expressing
human PrP and in primate models suggest a higher risk of transmission to humans
of the L-BSE form than for classical BSE agent. However, a major unresolved
issue concerns the potential transmissibility of the L-BSE agent by oral route.
To address this question, we infected mouse lemurs (Microcebus murinus), a
non-human primate model, with L-BSE by intracerebral or oral route.
Four adult lemurs were intracerebrally (IC) inoculated with 5mg of L-BSE
infected brain homogenate of an atypical French BSE case (02-2528). Four young
and four adult animals were fed with 5 mg or 50 mg of infected brain. After
sacrifice, the brain tissues were biochemically and immunocytochemically
investigated for PrPres.
The 4 animals IC inoculated died at 19 and 22 months postinoculation (mpi).
They developed blindness, tremor, abnormal posture, incoordinated movements,
balance loss. Symptoms get worse according to the disease progression, until
severe ataxia. Severe spongiosis was evidenced into the thalamus, the striatum,
the mesencephalon, and the brainstem, whereas into the cortex the vacuolisation
was weaker. Strong deposits of PrPres were detected into the thalamus, the
striatum, and the hippocampus whereas in the cerebral cortex, PrPres was
prominently accumulated in plaques.
The orally inoculated animals showed similar clinical symptoms occurring
between 27 and 34 mpi. Disease was characterized by progressive prostration,
loss of appetite and poor appearance of the fur. Only one adult animal showed
disequilibrium. PrPres was strongly accumulated only in the striatum and
thalamus and weakly into the cortex. No plaques were evidenced. Two animals that
were orally challenged at the age of two years are still alive and healthy 34
months after inoculation. The western blot analysis showed uniform molecular
profiles, irrespective of the route or dose of infection, and included notably a
PrPres form with low apparent molecular mass (~19 kDa) similar to the PrPres in
the original cattle brain. However, the PrPres profile in lemurs was
characterized by a higher proportion of di- and mono-glycosylated species (up to
95% of the total signal) than in the bovine L-BSE inoculum (~80%). In addition,
small amounts of PrPres were detected by western blotting in the spleen of three
animals (one intra-cerebrally inoculated and two fed with 5 mg of cattle brain).
Here, we demonstrate that the L-BSE agent can be transmitted by oral route
from cattle to young and adult mouse lemurs. In comparison to IC inoculated
animals, orally challenged lemurs were characterized by longer survival periods
as expected with this route of infection.
Saturday, May 26, 2012
Are USDA assurances on mad cow case 'gross oversimplification'?
SNIP...
What irks many scientists is the USDA’s April 25 statement that the rare
disease is “not generally associated with an animal consuming infected
feed.”
The USDA’s conclusion is a “gross oversimplification,” said Dr. Paul Brown,
one of the world’s experts on this type of disease who retired recently from the
National Institutes of Health. "(The agency) has no foundation on which to base
that statement.”
“We can’t say it’s not feed related,” agreed Dr. Linda Detwiler, an
official with the USDA during the Clinton Administration now at Mississippi
State.
In the May 1 email to me, USDA’s Cole backed off a bit. “No one knows the
origins of atypical cases of BSE,” she said
The argument about feed is critical because if feed is the cause, not a
spontaneous mutation, the California cow could be part of a larger outbreak.
SNIP...
Saturday, June 25, 2011
Transmissibility of BSE-L and Cattle-Adapted TME Prion Strain to Cynomolgus
Macaque
"BSE-L in North America may have existed for decades"
Over the next 8-10 weeks, approximately 40% of all the adult mink on the
farm died from TME.
snip...
The rancher was a ''dead stock'' feeder using mostly (>95%) downer or
dead dairy cattle...
Sunday, December 12, 2010
EFSA reviews BSE/TSE infectivity in small ruminant tissues News Story 2
December 2010
Monday, November 22, 2010
Atypical transmissible spongiform encephalopathies in ruminants: a
challenge for disease surveillance and control
REVIEW ARTICLES
Sunday, April 18, 2010
SCRAPIE AND ATYPICAL SCRAPIE TRANSMISSION STUDIES A REVIEW 2010
Thursday, November 18, 2010
Increased susceptibility of human-PrP transgenic mice to bovine spongiform
encephalopathy following passage in sheep
Wednesday, January 19, 2011
EFSA and ECDC review scientific evidence on possible links between TSEs in
animals and humans Webnachricht 19 Januar 2011
Tuesday, January 18, 2011
Agent strain variation in human prion disease: insights from a molecular
and pathological review of the National Institutes of Health series of
experimentally transmitted disease
Friday, February 11, 2011
Atypical/Nor98 Scrapie Infectivity in Sheep Peripheral Tissues
Wednesday, January 18, 2012
Selection of Distinct Strain Phenotypes in Mice Infected by Ovine Natural
Scrapie Isolates Similar to CH1641 Experimental Scrapie
Journal of Neuropathology & Experimental Neurology:
February 2012 - Volume 71 - Issue 2 - p 140–147
Monday, November 30, 2009
USDA AND OIE COLLABORATE TO EXCLUDE ATYPICAL SCRAPIE NOR-98 ANIMAL HEALTH
CODE
*** Spraker suggested an interesting explanation for the occurrence of
CWD. The deer pens at the Foot Hills Campus were built some 30-40 years ago by a
Dr. Bob Davis. At or abut that time, allegedly, some scrapie work was conducted
at this site. When deer were introduced to the pens they occupied ground that
had previously been occupied by sheep.
(PLEASE NOTE SOME OF THESE OLD UK GOVERNMENT FILE URLS ARE SLOW TO OPEN,
AND SOMETIMES YOU MAY HAVE TO CLICK ON MULTIPLE TIMES, PLEASE BE PATIENT, ANY
PROBLEMS PLEASE WRITE ME PRIVATELY, AND I WILL TRY AND FIX OR SEND YOU OLD PDF
FILE...TSS)
Wednesday, May 25, 2011
O.I.E. Terrestrial Animal Health Standards Commission and prion (TSE)
disease reporting 2011
----- Original Message -----
From: Terry S. Singeltary Sr.
To: mailto:BSE-L%40LISTS.AEGEE.ORG
Cc: mailto:trade%40oie.int ; mailto:oie%40oie.int ; mailto:f.diaz%40oie.int
; mailto:scientific.dept%40oie.int ; mailto:cjdvoice%40yahoogroups.com ;
mailto:BLOODCJD%40YAHOOGROUPS.COM
Sent: Tuesday, May 24, 2011 2:24 PM
Subject: O.I.E. Terrestrial Animal Health Standards Commission and prion
(TSE) disease reporting 2011
Friday, January 6, 2012
OIE 2012 Training Manual on Wildlife Diseases and Surveillance and TSE
Prion disease
Tuesday, January 17, 2012
Annual report of the Scientific Network on BSE-TSE EFSA-Q-2011-01110
Issued: 20 December 2011
2011 Monday, September 26, 2011
L-BSE BASE prion and atypical sporadic CJD
Wednesday, March 31, 2010
Atypical BSE in Cattle
To date the OIE/WAHO assumes that the human and animal health standards set
out in the BSE chapter for classical BSE (C-Type) applies to all forms of BSE
which include the H-type and L-type atypical forms. This assumption is
scientifically not completely justified and accumulating evidence suggests that
this may in fact not be the case. Molecular characterization and the spatial
distribution pattern of histopathologic lesions and immunohistochemistry (IHC)
signals are used to identify and characterize atypical BSE. Both the L-type and
H-type atypical cases display significant differences in the conformation and
spatial accumulation of the disease associated prion protein (PrPSc) in brains
of afflicted cattle. Transmission studies in bovine transgenic and wild type
mouse models support that the atypical BSE types might be unique strains because
they have different incubation times and lesion profiles when compared to C-type
BSE. When L-type BSE was inoculated into ovine transgenic mice and Syrian
hamster the resulting molecular fingerprint had changed, either in the first or
a subsequent passage, from L-type into C-type BSE.
In addition, non-human primates are specifically susceptible for atypical
BSE as demonstrated by an approximately 50% shortened incubation time for L-type
BSE as compared to C-type. Considering the current scientific information
available, it cannot be assumed that these different BSE types pose the same
human health risks as C-type BSE or that these risks are mitigated by the same
protective measures.
This study will contribute to a correct definition of specified risk
material (SRM) in atypical BSE. The incumbent of this position will develop new
and transfer existing, ultra-sensitive methods for the detection of atypical BSE
in tissue of experimentally infected cattle.
Thursday, August 12, 2010
Seven main threats for the future linked to prions
First threat
The TSE road map defining the evolution of European policy for protection
against prion diseases is based on a certain numbers of hypotheses some of which
may turn out to be erroneous. In particular, a form of BSE (called atypical
Bovine Spongiform Encephalopathy), recently identified by systematic testing in
aged cattle without clinical signs, may be the origin of classical BSE and thus
potentially constitute a reservoir, which may be impossible to eradicate if a
sporadic origin is confirmed.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
Owens, Julie
From: Terry S. Singeltary Sr. [mailto:flounder9%40verizon.net]
Sent: Monday, July 24, 2006 1:09 PM
To: FSIS RegulationsComments
Subject: [Docket No. FSIS-2006-0011] FSIS Harvard Risk Assessment of Bovine
Spongiform Encephalopathy (BSE)
Page 1 of 98
FSIS RFEPLY TO TSS ;
Harvard Risk Assessment of Bovine Spongiform Encephalopathy Update, October
31, 2005 INTRODUCTION The United States Department of Agriculture’s Food Safety
and Inspection Service (FSIS) held a public meeting on July 25, 2006 in
Washington, D.C. to present findings from the Harvard Risk Assessment of Bovine
Spongiform Encephalopathy Update, October 31, 2005 (report and model located on
the FSIS website:
Comments on technical aspects of the risk assessment were then submitted to
FSIS. Comments were received from Food and Water Watch, Food Animal Concerns
Trust (FACT), Farm Sanctuary, R-CALF USA, Linda A Detwiler, and Terry S.
Singeltary. This document provides itemized replies to the public comments
received on the 2005 updated Harvard BSE risk assessment. Please bear the
following points in mind:
Saturday, June 19, 2010
U.S. DENIED UPGRADED BSE STATUS FROM OIE
Friday, August 20, 2010
USDA: Animal Disease Traceability August 2010
Friday, November 18, 2011
country-of-origin labeling law (COOL) violates U.S. obligations under WTO
rules WT/DS384/R WT/DS386/R
Saturday, July 23, 2011
CATTLE HEADS WITH TONSILS, BEEF TONGUES, SPINAL CORD, SPECIFIED RISK
MATERIALS (SRM's) AND PRIONS, AKA MAD COW DISEASE
Saturday, November 6, 2010
TAFS1 Position Paper on Position Paper on Relaxation of the Feed Ban in the
EU
Berne, 2010 TAFS INTERNATIONAL FORUM FOR TRANSMISSIBLE ANIMAL DISEASES AND
FOOD SAFETY a non-profit Swiss Foundation
Archive Number 20101206.4364 Published Date 06-DEC-2010 Subject
PRO/AH/EDR>
Prion disease update 2010 (11) PRION DISEASE UPDATE 2010 (11)
USDA TRIPLE BSE MAD COW FIREWALL, SRM, FEED, AND SURVEILLANCE
2012
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
MAD COW USDA ATYPICAL L-TYPE BASE BSE, the rest of the story...
***Oral Transmission of L-type Bovine Spongiform Encephalopathy in Primate
Model
***Infectivity in skeletal muscle of BASE-infected cattle
***feedstuffs- It also suggests a similar cause or source for atypical BSE
in these countries.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans.
The present study demonstrated successful intraspecies transmission of
H-type BSE to cattle and the distribution and immunolabeling patterns of PrPSc
in the brain of the H-type BSE-challenged cattle. TSE agent virulence can be
minimally defined by oral transmission of different TSE agents (C-type, L-type,
and H-type BSE agents) [59]. Oral transmission studies with H-type BSEinfected
cattle have been initiated and are underway to provide information regarding the
extent of similarity in the immunohistochemical and molecular features before
and after transmission.
In addition, the present data will support risk assessments in some
peripheral tissues derived from cattle affected with H-type BSE.
Thursday, June 21, 2012
Clinical and Pathologic Features of H-Type Bovine Spongiform Encephalopathy
Associated with E211K Prion Protein Polymorphism
Justin J. Greenlee1*, Jodi D. Smith1, M. Heather West Greenlee2, Eric M.
Nicholson1
1 National Animal Disease Center, United States Department of Agriculture,
Agricultural Research Service, Ames, Iowa, United States of America, 2 Iowa
State University, Ames, Iowa, United States of America
Abstract
The majority of bovine spongiform encephalopathy (BSE) cases have been
ascribed to the classical form of the disease. Htype and L-type BSE cases have
atypical molecular profiles compared to classical BSE and are thought to arise
spontaneously. However, one case of H-type BSE was associated with a heritable
E211K mutation in the prion protein gene. The purpose of this study was to
describe transmission of this unique isolate of H-type BSE when inoculated into
a calf of the same genotype by the intracranial route. Electroretinograms were
used to demonstrate preclinical deficits in retinal function, and optical
coherence tomography was used to demonstrate an antemortem decrease in retinal
thickness. The calf rapidly progressed to clinical disease (9.4 months) and was
necropsied. Widespread distribution of abnormal prion protein was demonstrated
within neural tissues by western blot and immunohistochemistry. While this
isolate is categorized as BSE-H due to a higher molecular mass of the
unglycosylated PrPSc isoform, a strong labeling of all 3 PrPSc bands with
monoclonal antibodies 6H4 and P4, and a second unglycosylated band at
approximately 14 kDa when developed with antibodies that bind in the C-terminal
region, it is unique from other described cases of BSE-H because of an
additional band 23 kDa demonstrated on western blots of the cerebellum. This
work demonstrates that this isolate is transmissible, has a BSE-H phenotype when
transmitted to cattle with the K211 polymorphism, and has molecular features
that distinguish it from other cases of BSE-H described in the literature.
snip...
Most significantly it must be determined if the molecular phenotype of this
cattle TSE remains stable when transmitted to cattle without the E211K
polymorphism as several other isolates of atypical BSE have been shown to adopt
a molecular profile consistent with classical BSE after passage in transgenic
mice expressing bovine PrPC [40] or multiple passages in wild type mice [23].
Results of ongoing studies, namely passage of the E211K Htype isolate into
wild-type cattle, will lend further insight into what role, if any, genetic and
sporadic forms of BSE may have played in the origins of classical BSE. Atypical
cases presumably of spontaneous or, in the case of E211K BSE-H, genetic origins
highlight that it may not be possible to eradicate BSE entirely and that it
would be hazardous to remove disease control measures such as prohibiting the
feeding of meat and bone meal to ruminants.
Saturday, May 26, 2012
Are USDA assurances on mad cow case 'gross oversimplification'?
SNIP...
What irks many scientists is the USDA’s April 25 statement that the rare
disease is “not generally associated with an animal consuming infected
feed.”
The USDA’s conclusion is a “gross oversimplification,” said Dr. Paul Brown,
one of the world’s experts on this type of disease who retired recently from the
National Institutes of Health. "(The agency) has no foundation on which to base
that statement.”
“We can’t say it’s not feed related,” agreed Dr. Linda Detwiler, an
official with the USDA during the Clinton Administration now at Mississippi
State.
In the May 1 email to me, USDA’s Cole backed off a bit. “No one knows the
origins of atypical cases of BSE,” she said
The argument about feed is critical because if feed is the cause, not a
spontaneous mutation, the California cow could be part of a larger
outbreak.
SNIP...
P.9.21
Molecular characterization of BSE in Canada
Jianmin Yang1, Sandor Dudas2, Catherine Graham2, Markus Czub3, Tim
McAllister1, Stefanie Czub1 1Agriculture and Agri-Food Canada Research Centre,
Canada; 2National and OIE BSE Reference Laboratory, Canada; 3University of
Calgary, Canada
Background: Three BSE types (classical and two atypical) have been
identified on the basis of molecular characteristics of the misfolded protein
associated with the disease. To date, each of these three types have been
detected in Canadian cattle.
Objectives: This study was conducted to further characterize the 16
Canadian BSE cases based on the biochemical properties of there associated
PrPres. Methods: Immuno-reactivity, molecular weight, glycoform profiles and
relative proteinase K sensitivity of the PrPres from each of the 16 confirmed
Canadian BSE cases was determined using modified Western blot analysis.
Results: Fourteen of the 16 Canadian BSE cases were C type, 1 was H type
and 1 was L type. The Canadian H and L-type BSE cases exhibited size shifts and
changes in glycosylation similar to other atypical BSE cases. PK digestion under
mild and stringent conditions revealed a reduced protease resistance of the
atypical cases compared to the C-type cases. N terminal- specific antibodies
bound to PrPres from H type but not from C or L type. The C-terminal-specific
antibodies resulted in a shift in the glycoform profile and detected a fourth
band in the Canadian H-type BSE.
Discussion: The C, L and H type BSE cases in Canada exhibit molecular
characteristics similar to those described for classical and atypical BSE cases
from Europe and Japan. This supports the theory that the importation of BSE
contaminated feedstuff is the source of C-type BSE in Canada.
*** It also suggests a similar cause or source for atypical BSE in these
countries.
Thursday, August 12, 2010
Seven main threats for the future linked to prions
First threat
The TSE road map defining the evolution of European policy for protection
against prion diseases is based on a certain numbers of hypotheses some of which
may turn out to be erroneous. In particular, a form of BSE (called atypical
Bovine Spongiform Encephalopathy), recently identified by systematic testing in
aged cattle without clinical signs, may be the origin of classical BSE and thus
potentially constitute a reservoir, which may be impossible to eradicate if a
sporadic origin is confirmed.
***Also, a link is suspected between atypical BSE and some apparently
sporadic cases of Creutzfeldt-Jakob disease in humans. These atypical BSE cases
constitute an unforeseen first threat that could sharply modify the European
approach to prion diseases.
Second threat
snip...
in the url that follows, I have posted
SRM breaches first, as late as 2011.
then
MAD COW FEED BAN BREACHES AND TONNAGES OF MAD COW FEED IN COMMERCE up until
2007, when they ceased posting them.
then,
MAD COW SURVEILLANCE BREACHES.
Friday, May 18, 2012
Update from APHIS Regarding a Detection of Bovine Spongiform Encephalopathy
(BSE) in the United States Friday May 18, 2012
Thursday, June 21, 2012
MEATINGPLACE.COM WAVES MAGIC WAND AND EXPECTS THE USDA MAD COW FOLLIES BSE
TO BE GONE
Thursday, June 14, 2012
R-CALF USA Calls USDA Dishonest and Corrupt; Submits Fourth Request for
Extension
R-CALF United Stockgrowers of America
Friday, May 25, 2012
R-CALF USDA’s New BSE Rule Eliminates Important Protections Needed to
Prevent BSE Spread
Monday, June 18, 2012
R-CALF Submits Incomplete Comments Under Protest in Bizarre Rulemaking
“Bovine Spongiform Encephalopathy; Importation of Bovines and Bovine Products”
Sunday, February 12, 2012
National Prion Disease Pathology Surveillance Center Cases Examined1
(August 19, 2011) including Texas
price of prion poker goes up again $$$
Monday, June 11, 2012
Guidance for Industry Draft Guidance for Industry: Amendment to “Guidance
for Industry: Revised Preventive Measures to Reduce the Possible Risk of
Transmission of Creutzfeldt-Jakob Disease and Variant Creutzfeldt-Jakob Disease
by Blood and Blood Products”
Sunday, June 3, 2012
A new neurological disease in primates inoculated with prion-infected blood
or blood components
Terry S. Singeltary Sr. on the Creutzfeldt-Jakob Disease Public Health
Crisis
full text with source references ;
layperson
MOM DOD hvCJD confirmed
TSS